NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Researchers2
What Works Clearinghouse Rating
Showing 1 to 15 of 212 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Heather Allmond Barker; Hollylynne S. Lee; Shaun Kellogg; Robin Anderson – Online Learning, 2024
Identifying motivation for enrollment in MOOCs has been an important way to predict participant success rates. But themes for motivation have largely centered around themes for enrolling in any MOOC, and not ones specific to the course being studied. In this study, qualitatively coding discussion forums was combined with topic modeling to identify…
Descriptors: MOOCs, Motivation, Enrollment, Professional Development
Peer reviewed Peer reviewed
Direct linkDirect link
Julian M. Pine; Daniel Freudenthal; Fernand Gobet – Journal of Child Language, 2023
Verb-marking errors are a characteristic feature of the speech of typically-developing (TD) children and are particularly prevalent in the speech of children with Developmental Language Disorder (DLD). However, both the pattern of verb-marking error in TD children and the pattern of verb-marking deficit in DLD vary across languages and interact…
Descriptors: Developmental Disabilities, Language Impairments, Verbs, Error Patterns
Peer reviewed Peer reviewed
Direct linkDirect link
Behzad Mirzababaei; Viktoria Pammer-Schindler – IEEE Transactions on Learning Technologies, 2024
In this article, we investigate a systematic workflow that supports the learning engineering process of formulating the starting question for a conversational module based on existing learning materials, specifying the input that transformer-based language models need to function as classifiers, and specifying the adaptive dialogue structure,…
Descriptors: Learning Processes, Electronic Learning, Artificial Intelligence, Natural Language Processing
Peer reviewed Peer reviewed
Direct linkDirect link
Frank, Stefan L. – Language Learning, 2021
Although computational models can simulate aspects of human sentence processing, research on this topic has remained almost exclusively limited to the single language case. The current review presents an overview of the state of the art in computational cognitive models of sentence processing, and discusses how recent sentence-processing models…
Descriptors: Multilingualism, Language Processing, Computational Linguistics, Psycholinguistics
Peer reviewed Peer reviewed
Direct linkDirect link
Derwin Suhartono; Muhammad Rizki Nur Majiid; Renaldy Fredyan – Education and Information Technologies, 2024
Exam evaluations are essential to assessing students' knowledge and progress in a subject or course. To meet learning objectives and assess student performance, questions must be themed. Automatic Question Generation (AQG) is our novel approach to this problem. A comprehensive process for autonomously generating Bahasa Indonesia text questions is…
Descriptors: Foreign Countries, Computational Linguistics, Computer Software, Questioning Techniques
Peer reviewed Peer reviewed
Direct linkDirect link
Dadi Ramesh; Suresh Kumar Sanampudi – European Journal of Education, 2024
Automatic essay scoring (AES) is an essential educational application in natural language processing. This automated process will alleviate the burden by increasing the reliability and consistency of the assessment. With the advances in text embedding libraries and neural network models, AES systems achieved good results in terms of accuracy.…
Descriptors: Scoring, Essays, Writing Evaluation, Memory
Peer reviewed Peer reviewed
Direct linkDirect link
Wang, Jue; Engelhard, George; Combs, Trenton – Journal of Experimental Education, 2023
Unfolding models are frequently used to develop scales for measuring attitudes. Recently, unfolding models have been applied to examine rater severity and accuracy within the context of rater-mediated assessments. One of the problems in applying unfolding models to rater-mediated assessments is that the substantive interpretations of the latent…
Descriptors: Writing Evaluation, Scoring, Accuracy, Computational Linguistics
Peer reviewed Peer reviewed
Direct linkDirect link
Caroline F. Rowland; Amy Bidgood; Gary Jones; Andrew Jessop; Paula Stinson; Julian M. Pine; Samantha Durrant; Michelle S. Peter – Language Learning, 2025
A strong predictor of children's language is performance on non-word repetition (NWR) tasks. However, the basis of this relationship remains unknown. Some suggest that NWR tasks measure phonological working memory, which then affects language growth. Others argue that children's knowledge of language/language experience affects NWR performance. A…
Descriptors: Vocabulary Development, Comparative Analysis, Computational Linguistics, Language Skills
Peer reviewed Peer reviewed
Direct linkDirect link
Aakriti Kumar; Aaron S. Benjamin; Andrew Heathcote; Mark Steyvers – npj Science of Learning, 2022
Practice in real-world settings exhibits many idiosyncrasies of scheduling and duration that can only be roughly approximated by laboratory research. Here we investigate 39,157 individuals' performance on two cognitive games on the Lumosity platform over a span of 5 years. The large-scale nature of the data allows us to observe highly varied…
Descriptors: Comparative Analysis, Computational Linguistics, Learning Processes, Computer Games
Peer reviewed Peer reviewed
Direct linkDirect link
Wang, Heqiao; Troia, Gary A. – Written Communication, 2023
The primary purpose of this study is to investigate the degree to which register knowledge, register-specific motivation, and diverse linguistic features are predictive of human judgment of writing quality in three registers--narrative, informative, and opinion. The secondary purpose is to compare the evaluation metrics of register-partitioned…
Descriptors: Writing Evaluation, Essays, Elementary School Students, Grade 4
Peer reviewed Peer reviewed
Direct linkDirect link
Jionghao Lin; Wei Tan; Lan Du; Wray Buntine; David Lang; Dragan Gasevic; Guanliang Chen – IEEE Transactions on Learning Technologies, 2024
Automating the classification of instructional strategies from a large-scale online tutorial dialogue corpus is indispensable to the design of dialogue-based intelligent tutoring systems. Despite many existing studies employing supervised machine learning (ML) models to automate the classification process, they concluded that building a…
Descriptors: Classification, Dialogs (Language), Teaching Methods, Computer Assisted Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Aislinn Keogh; Simon Kirby; Jennifer Culbertson – Cognitive Science, 2024
General principles of human cognition can help to explain why languages are more likely to have certain characteristics than others: structures that are difficult to process or produce will tend to be lost over time. One aspect of cognition that is implicated in language use is working memory--the component of short-term memory used for temporary…
Descriptors: Language Variation, Learning Processes, Short Term Memory, Schemata (Cognition)
Peer reviewed Peer reviewed
Direct linkDirect link
Manapat, Patrick D.; Edwards, Michael C. – Educational and Psychological Measurement, 2022
When fitting unidimensional item response theory (IRT) models, the population distribution of the latent trait ([theta]) is often assumed to be normally distributed. However, some psychological theories would suggest a nonnormal [theta]. For example, some clinical traits (e.g., alcoholism, depression) are believed to follow a positively skewed…
Descriptors: Robustness (Statistics), Computational Linguistics, Item Response Theory, Psychological Patterns
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Paul Meara; Imma Miralpeix – Vocabulary Learning and Instruction, 2022
The idea that a vocabulary is a network of words is one that has become a common theme of the second language (L2) vocabulary research literature. However, not many people have considered the wider implications of this powerful metaphor. This paper is the first in a series of workshops that examines some of these implications. In this first…
Descriptors: Second Language Learning, Vocabulary Development, Workshops, Models
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Mohsen Dolatabadi – Australian Journal of Applied Linguistics, 2023
Many datasets resulting from participant ratings for word norms and also concreteness ratios are available. However, the concreteness information of infrequent words and non-words is rare. This work aims to propose a model for estimating the concreteness of infrequent and new lexicons. Here, we used Lancaster sensory-motor word norms to predict…
Descriptors: Prediction, Validity, Models, Computational Linguistics
Previous Page | Next Page ยป
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9  |  10  |  11  |  ...  |  15