NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 187 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Zhou, Todd; Jiao, Hong – Educational and Psychological Measurement, 2023
Cheating detection in large-scale assessment received considerable attention in the extant literature. However, none of the previous studies in this line of research investigated the stacking ensemble machine learning algorithm for cheating detection. Furthermore, no study addressed the issue of class imbalance using resampling. This study…
Descriptors: Cheating, Measurement, Artificial Intelligence, Algorithms
Peer reviewed Peer reviewed
Direct linkDirect link
Hayat Sahlaoui; El Arbi Abdellaoui Alaoui; Said Agoujil; Anand Nayyar – Education and Information Technologies, 2024
Predicting student performance using educational data is a significant area of machine learning research. However, class imbalance in datasets and the challenge of developing interpretable models can hinder accuracy. This study compares different variations of the Synthetic Minority Oversampling Technique (SMOTE) combined with classification…
Descriptors: Sampling, Classification, Algorithms, Prediction
Peer reviewed Peer reviewed
Direct linkDirect link
Gonzalez, Oscar – Educational and Psychological Measurement, 2023
When scores are used to make decisions about respondents, it is of interest to estimate classification accuracy (CA), the probability of making a correct decision, and classification consistency (CC), the probability of making the same decision across two parallel administrations of the measure. Model-based estimates of CA and CC computed from the…
Descriptors: Classification, Accuracy, Intervals, Probability
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Dogan, Esra; Bay, Erdal; Dös, Bülent – International Education Studies, 2023
This study analyzed studies done in Turkey in the context of curriculum evaluation (CE) by asking, "How is it made? The study was carried out in two stages. In the first stage, the document analysis method used 215 theses written between 1991 and 2020 on CE were analyzed according to the "thesis review form." In the second stage,…
Descriptors: Curriculum Evaluation, Evaluation Methods, Foreign Countries, Theses
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Olsson, Ulf – Practical Assessment, Research & Evaluation, 2022
We discuss analysis of 5-grade Likert type data in the two-sample case. Analysis using two-sample "t" tests, nonparametric Wilcoxon tests, and ordinal regression methods, are compared using simulated data based on an ordinal regression paradigm. One thousand pairs of samples of size "n"=10 and "n"=30 were generated,…
Descriptors: Regression (Statistics), Likert Scales, Sampling, Nonparametric Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Rebeckah K. Fussell; Emily M. Stump; N. G. Holmes – Physical Review Physics Education Research, 2024
Physics education researchers are interested in using the tools of machine learning and natural language processing to make quantitative claims from natural language and text data, such as open-ended responses to survey questions. The aspiration is that this form of machine coding may be more efficient and consistent than human coding, allowing…
Descriptors: Physics, Educational Researchers, Artificial Intelligence, Natural Language Processing
Peer reviewed Peer reviewed
Direct linkDirect link
Hayes, Brett K.; Liew, Shi Xian; Desai, Saoirse Connor; Navarro, Danielle J.; Wen, Yuhang – Journal of Experimental Psychology: Learning, Memory, and Cognition, 2023
The samples of evidence we use to make inferences in everyday and formal settings are often subject to selection biases. Two property induction experiments examined group and individual sensitivity to one type of selection bias: sampling frames - causal constraints that only allow certain types of instances to be sampled. Group data from both…
Descriptors: Logical Thinking, Inferences, Bias, Individual Differences
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Rodriguez, AE; Rosen, John – Research in Higher Education Journal, 2023
The various empirical models built for enrollment management, operations, and program evaluation purposes may have lost their predictive power as a result of the recent collective impact of COVID restrictions, widespread social upheaval, and the shift in educational preferences. This statistical artifact is known as model drifting, data-shift,…
Descriptors: Models, Enrollment Management, School Holding Power, Data
Peer reviewed Peer reviewed
Direct linkDirect link
Narjis, Ghulam; Shabbir, Javid – Sociological Methods & Research, 2023
The randomized response technique (RRT) is an effective method designed to obtain the stigmatized information from respondents while assuring the privacy. In this study, we propose a new two-stage RRT model to estimate the prevalence of sensitive attribute ([pi]). A simulation study shows that the empirical mean and variance of proposed estimator…
Descriptors: Comparative Analysis, Incidence, Efficiency, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Lee, Sooyong; Han, Suhwa; Choi, Seung W. – Educational and Psychological Measurement, 2022
Response data containing an excessive number of zeros are referred to as zero-inflated data. When differential item functioning (DIF) detection is of interest, zero-inflation can attenuate DIF effects in the total sample and lead to underdetection of DIF items. The current study presents a DIF detection procedure for response data with excess…
Descriptors: Test Bias, Monte Carlo Methods, Simulation, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Paek, Insu; Liang, Xinya; Lin, Zhongtian – Measurement: Interdisciplinary Research and Perspectives, 2021
The property of item parameter invariance in item response theory (IRT) plays a pivotal role in the applications of IRT such as test equating. The scope of parameter invariance when using estimates from finite biased samples in the applications of IRT does not appear to be clearly documented in the IRT literature. This article provides information…
Descriptors: Item Response Theory, Computation, Test Items, Bias
Peer reviewed Peer reviewed
Direct linkDirect link
Schnell, Rainer; Thomas, Kathrin – Sociological Methods & Research, 2023
This article provides a meta-analysis of studies using the crosswise model (CM) in estimating the prevalence of sensitive characteristics in different samples and populations. On a data set of 141 items published in 33 either articles or books, we compare the difference ([delta]) between estimates based on the CM and a direct question (DQ). The…
Descriptors: Meta Analysis, Models, Comparative Analysis, Publications
Peer reviewed Peer reviewed
Direct linkDirect link
Olanipekun, Oluwaseun L.; Zhao, JuLong; Wang, Rongdong; A. Sedory, Stephen; Singh, Sarjinder – Sociological Methods & Research, 2023
In carrying out surveys involving sensitive characteristics, randomized response models have been considered among the best techniques since they provide the maximum privacy protection to the respondents and procure honest responses. Over the years, researchers have carried out studies on the estimation of proportions of the population possessing…
Descriptors: Correlation, Smoking, Thinking Skills, Health Behavior
Matthew Jannetti; Amy Carroll-Scott; Erikka Gilliam; Irene Headen; Maggie Beverly; Félice Lê-Scherban – Field Methods, 2023
Place-based initiatives often use resident surveys to inform and evaluate interventions. Sampling based on well-defined sampling frames is important but challenging for initiatives that target subpopulations. Databases that enumerate total population counts can produce overinclusive sampling frames, resulting in costly outreach to ineligible…
Descriptors: Sampling, Probability, Definitions, Prediction
Peer reviewed Peer reviewed
Direct linkDirect link
Smith, Jeffrey A.; Burow, Jessica – Sociological Methods & Research, 2020
Agent-based modeling holds great potential as an analytical tool. Agent-based models (ABMs) are, however, also vulnerable to critique, as they often employ stylized social worlds, with little connection to the actual environment in question. Given these concerns, there has been a recent call to more fully incorporate empirical data into ABMs. This…
Descriptors: Simulation, Models, Networks, Cultural Influences
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9  |  10  |  11  |  12  |  13