Publication Date
In 2025 | 10 |
Since 2024 | 49 |
Since 2021 (last 5 years) | 89 |
Since 2016 (last 10 years) | 89 |
Since 2006 (last 20 years) | 89 |
Descriptor
Algorithms | 94 |
Prediction | 94 |
Artificial Intelligence | 56 |
Models | 34 |
Accuracy | 33 |
Learning Analytics | 30 |
Academic Achievement | 26 |
Classification | 21 |
Electronic Learning | 17 |
College Students | 15 |
Foreign Countries | 13 |
More ▼ |
Source
Author
Arpaci, Ibrahim | 2 |
Khor, Ean Teng | 2 |
Sangjin Kim | 2 |
Aammou, Souhaib | 1 |
Abd-Ellatif, Laila | 1 |
Abdelali Zakrani | 1 |
Abdelgaber, Sayed | 1 |
Abdelhadi Raihani | 1 |
Abdellah Bennane | 1 |
Abdullahi Yusuf | 1 |
Abdulmohsen Algarni | 1 |
More ▼ |
Publication Type
Journal Articles | 94 |
Reports - Research | 71 |
Reports - Evaluative | 11 |
Information Analyses | 6 |
Reports - Descriptive | 6 |
Guides - Non-Classroom | 1 |
Numerical/Quantitative Data | 1 |
Education Level
Higher Education | 33 |
Postsecondary Education | 33 |
Secondary Education | 4 |
Elementary Secondary Education | 3 |
Elementary Education | 2 |
High Schools | 2 |
Junior High Schools | 2 |
Middle Schools | 2 |
Two Year Colleges | 1 |
Audience
Policymakers | 1 |
Location
South Korea | 3 |
Australia | 2 |
Africa | 1 |
Asia | 1 |
China | 1 |
Europe | 1 |
Hong Kong | 1 |
Illinois | 1 |
India | 1 |
Massachusetts (Boston) | 1 |
Netherlands | 1 |
More ▼ |
Laws, Policies, & Programs
Assessments and Surveys
National Assessment Program… | 1 |
Program for International… | 1 |
Trends in International… | 1 |
What Works Clearinghouse Rating
Adrianne L. Jenner; Pamela M. Burrage – International Journal of Mathematical Education in Science and Technology, 2024
Mathematics provides us with tools to capture and explain phenomena in everyday biology, even at the nanoscale. The most regularly applied technique to biology is differential equations. In this article, we seek to present how differential equation models of biological phenomena, particularly the flow through ion channels, can be used to motivate…
Descriptors: Cytology, Mathematical Models, Prediction, Equations (Mathematics)
Venera Nakhipova; Yerzhan Kerimbekov; Zhanat Umarova; Halil ibrahim Bulbul; Laura Suleimenova; Elvira Adylbekova – International Journal of Information and Communication Technology Education, 2024
This article introduces a novel method that integrates collaborative filtering into the naive Bayes model to enhance predicting student academic performance. The combined approach leverages collaborative user behavior analysis and probabilistic modeling, showing promising results in improved prediction precision. Collaborative Filtering explores…
Descriptors: Academic Achievement, Prediction, Cooperation, Behavior
Ben Williamson; Carolina Valladares Celis; Arathi Sriprakash; Jessica Pykett; Keri Facer – Learning, Media and Technology, 2025
Futures of education are increasingly defined through predictive technologies and methods. We conceptualize 'algorithmic futuring' as the use of data-driven digital methods and predictive infrastructures to anticipate educational futures and animate actions in the present towards their materialization. Specifically, we focus on algorithmic…
Descriptors: Algorithms, Prediction, Investment, Educational Technology
Senthil Kumaran, V.; Malar, B. – Interactive Learning Environments, 2023
Churn in e-learning refers to learners who gradually perform less and become lethargic and may potentially drop out from the course. Churn prediction is a highly sensitive and critical task in an e-learning system because inaccurate predictions might cause undesired consequences. A lot of approaches proposed in the literature analyzed and modeled…
Descriptors: Electronic Learning, Dropouts, Accuracy, Classification
Mouna Ben Said; Yessine Hadj Kacem; Abdulmohsen Algarni; Atef Masmoudi – Education and Information Technologies, 2024
In the current educational landscape, where large amounts of data are being produced by institutions, Educational Data Mining (EDM) emerges as a critical discipline that plays a crucial role in extracting knowledge from this data to help academic policymakers make decisions. EDM has a primary focus on predicting students' academic performance.…
Descriptors: Prediction, Academic Achievement, Artificial Intelligence, Algorithms
Andrea Zanellati; Daniele Di Mitri; Maurizio Gabbrielli; Olivia Levrini – IEEE Transactions on Learning Technologies, 2024
Knowledge tracing is a well-known problem in AI for education, consisting of monitoring how the knowledge state of students changes during the learning process and accurately predicting their performance in future exercises. In recent years, many advances have been made thanks to various machine learning and deep learning techniques. Despite their…
Descriptors: Artificial Intelligence, Prior Learning, Knowledge Management, Models
Hayat Sahlaoui; El Arbi Abdellaoui Alaoui; Said Agoujil; Anand Nayyar – Education and Information Technologies, 2024
Predicting student performance using educational data is a significant area of machine learning research. However, class imbalance in datasets and the challenge of developing interpretable models can hinder accuracy. This study compares different variations of the Synthetic Minority Oversampling Technique (SMOTE) combined with classification…
Descriptors: Sampling, Classification, Algorithms, Prediction
Sotoudeh, Ramina; DiMaggio, Paul – Sociological Methods & Research, 2023
Sociologists increasingly face choices among competing algorithms that represent reasonable approaches to the same task, with little guidance in choosing among them. We develop a strategy that uses simulated data to identify the conditions under which different methods perform well and applies what is learned from the simulations to predict which…
Descriptors: Algorithms, Simulation, Prediction, Correlation
Stacey Lynn von Winckelmann – Information and Learning Sciences, 2023
Purpose: This study aims to explore the perception of algorithm accuracy among data professionals in higher education. Design/methodology/approach: Social justice theory guided the qualitative descriptive study and emphasized four principles: access, participation, equity and human rights. Data collection included eight online open-ended…
Descriptors: Prediction, Algorithms, Racism, Accuracy
Félix González-Carrasco; Felipe Espinosa Parra; Izaskun Álvarez-Aguado; Sebastián Ponce Olguín; Vanessa Vega Córdova; Miguel Roselló-Peñaloza – British Journal of Learning Disabilities, 2025
Background: The study focuses on the need to optimise assessment scales for support needs in individuals with intellectual and developmental disabilities. Current scales are often lengthy and redundant, leading to exhaustion and response burden. The goal is to use machine learning techniques, specifically item-reduction methods and selection…
Descriptors: Artificial Intelligence, Intellectual Disability, Developmental Disabilities, Individual Needs
Jia Zhu; Xiaodong Ma; Changqin Huang – IEEE Transactions on Learning Technologies, 2024
Knowledge tracing (KT) for evaluating students' knowledge is an essential task in personalized education. More and more researchers have devoted themselves to solving KT tasks, e.g., deep knowledge tracing (DKT), which can capture more sophisticated representations of student knowledge. Nonetheless, these techniques ignore the reconstruction of…
Descriptors: Teaching Methods, Knowledge Level, Algorithms, Attribution Theory
Senay Kocakoyun Aydogan; Turgut Pura; Fatih Bingül – Malaysian Online Journal of Educational Technology, 2024
In every culture and era, education is considered the most fundamental reality and rule that societies prioritize and deem essential. Throughout the process spanning thousands of years, from the emergence of writing to the present day, education has undergone various forms and formats of change. Education has been a continuous guide for shaping,…
Descriptors: Prediction, Academic Achievement, Artificial Intelligence, Algorithms
Khoushehgir, Fatemeh; Sulaimany, Sadegh – Education and Information Technologies, 2023
In recent years, the rapid growth of Massive Open Online Courses (MOOCs) has attracted much attention for related research. Besides, one of the main challenges in MOOCs is the high dropout or low completion rate. Early dropout prediction algorithms aim the educational institutes to retain the students for the related course. There are several…
Descriptors: Prediction, Dropout Prevention, MOOCs, Dropout Rate
Jyoti Prakash Meher; Rajib Mall – IEEE Transactions on Education, 2025
Contribution: This article suggests a novel method for diagnosing a learner's cognitive proficiency using deep neural networks (DNNs) based on her answers to a series of questions. The outcome of the forecast can be used for adaptive assistance. Background: Often a learner spends considerable amounts of time in attempting questions on the concepts…
Descriptors: Cognitive Ability, Assistive Technology, Adaptive Testing, Computer Assisted Testing
Ulrike Padó; Yunus Eryilmaz; Larissa Kirschner – International Journal of Artificial Intelligence in Education, 2024
Short-Answer Grading (SAG) is a time-consuming task for teachers that automated SAG models have long promised to make easier. However, there are three challenges for their broad-scale adoption: A technical challenge regarding the need for high-quality models, which is exacerbated for languages with fewer resources than English; a usability…
Descriptors: Grading, Automation, Test Format, Computer Assisted Testing