Publication Date
In 2025 | 3 |
Since 2024 | 6 |
Since 2021 (last 5 years) | 13 |
Since 2016 (last 10 years) | 20 |
Since 2006 (last 20 years) | 36 |
Descriptor
Prediction | 40 |
Statistical Inference | 40 |
Bayesian Statistics | 12 |
Probability | 10 |
Models | 9 |
Sampling | 9 |
Computation | 8 |
Foreign Countries | 8 |
Regression (Statistics) | 5 |
Sample Size | 5 |
Statistical Analysis | 5 |
More ▼ |
Source
Author
Griffiths, Thomas L. | 4 |
David Kaplan | 2 |
Kazak, Sibel | 2 |
Kjorte Harra | 2 |
Makar, Katie | 2 |
Tenenbaum, Joshua B. | 2 |
Allmond, Sue | 1 |
Ames, Allison J. | 1 |
Austin van Loon | 1 |
Baek, Eunkyeng | 1 |
Baram, Tallie Z. | 1 |
More ▼ |
Publication Type
Journal Articles | 40 |
Reports - Research | 21 |
Reports - Evaluative | 12 |
Reports - Descriptive | 5 |
Opinion Papers | 2 |
Guides - Classroom - Teacher | 1 |
Education Level
Audience
Practitioners | 2 |
Administrators | 1 |
Researchers | 1 |
Teachers | 1 |
Location
Turkey | 2 |
Australia | 1 |
Germany | 1 |
Israel | 1 |
Italy | 1 |
Portugal | 1 |
Switzerland | 1 |
United Kingdom (England) | 1 |
United States | 1 |
Laws, Policies, & Programs
Assessments and Surveys
ACT Assessment | 1 |
National Assessment of… | 1 |
Program for International… | 1 |
SAT (College Admission Test) | 1 |
Teaching and Learning… | 1 |
What Works Clearinghouse Rating
Hans Humenberger – Teaching Statistics: An International Journal for Teachers, 2025
In the last years special "ovals" appear increasingly often in diagrams and applets for discussing crucial items of statistical inference (when dealing with confidence intervals for an unknown probability p; approximation of the binomial distribution by the normal distribution; especially in German literature, see e.g. [Meyer,…
Descriptors: Computer Oriented Programs, Prediction, Intervals, Statistical Inference
David Broska; Michael Howes; Austin van Loon – Sociological Methods & Research, 2025
Large language models (LLMs) provide cost-effective but possibly inaccurate predictions of human behavior. Despite growing evidence that predicted and observed behavior are often not "interchangeable," there is limited guidance on using LLMs to obtain valid estimates of causal effects and other parameters. We argue that LLM predictions…
Descriptors: Artificial Intelligence, Observation, Prediction, Correlation
Gregory Chernov – Evaluation Review, 2025
Most existing solutions to the current replication crisis in science address only the factors stemming from specific poor research practices. We introduce a novel mechanism that leverages the experts' predictive abilities to analyze the root causes of replication failures. It is backed by the principle that the most accurate predictor is the most…
Descriptors: Replication (Evaluation), Prediction, Scientific Research, Failure
David Kaplan; Kjorte Harra – Large-scale Assessments in Education, 2024
This paper aims to showcase the value of implementing a Bayesian framework to analyze and report results from international large-scale assessments and provide guidance to users who want to analyse ILSA data using this approach. The motivation for this paper stems from the recognition that Bayesian statistical inference is fast becoming a popular…
Descriptors: Bayesian Statistics, Administrator Surveys, Teacher Surveys, Measurement
Kjorte Harra; David Kaplan – Structural Equation Modeling: A Multidisciplinary Journal, 2024
The present work focuses on the performance of two types of shrinkage priors--the horseshoe prior and the recently developed regularized horseshoe prior--in the context of inducing sparsity in path analysis and growth curve models. Prior research has shown that these horseshoe priors induce sparsity by at least as much as the "gold…
Descriptors: Structural Equation Models, Bayesian Statistics, Regression (Statistics), Statistical Inference
Kitto, Kirsty; Hicks, Ben; Shum, Simon Buckingham – British Journal of Educational Technology, 2023
An extraordinary amount of data is becoming available in educational settings, collected from a wide range of Educational Technology tools and services. This creates opportunities for using methods from Artificial Intelligence and Learning Analytics (LA) to improve learning and the environments in which it occurs. And yet, analytics results…
Descriptors: Causal Models, Learning Analytics, Educational Theories, Artificial Intelligence
Estrella, Soledad; Méndez-Reina, Maritza; Vidal-Szabó, Pedro – Statistics Education Research Journal, 2023
Recent research suggests the benefits of supporting a progressive understanding of concepts of inference prior to the teaching of procedures and formal calculations through the study of informal statistical inference (ISI). To contribute to the growing knowledge about the early learning and teaching of statistics, particularly regarding the…
Descriptors: Grade 3, Elementary School Students, Learning Trajectories, Statistics Education
Yangqiuting Li; Chandralekha Singh – Physical Review Physics Education Research, 2024
Structural equation modeling (SEM) is a statistical method widely used in educational research to investigate relationships between variables. SEM models are typically constructed based on theoretical foundations and assessed through fit indices. However, a well-fitting SEM model alone is not sufficient to verify the causal inferences underlying…
Descriptors: Structural Equation Models, Statistical Analysis, Educational Research, Causal Models
Kaplan, David; Huang, Mingya – Large-scale Assessments in Education, 2021
Of critical importance to education policy is monitoring trends in education outcomes over time. In the United States, the National Assessment of Educational Progress (NAEP) has provided long-term trend data since 1970; at the state/jurisdiction level, NAEP has provided long-term trend data since 1996. In addition to the national NAEP, all 50…
Descriptors: Educational Policy, Educational Trends, National Competency Tests, Bayesian Statistics
Worsley, Marcelo; Martinez-Maldonado, Roberto; D'Angelo, Cynthia – Journal of Learning Analytics, 2021
Multimodal learning analytics (MMLA) has increasingly been a topic of discussion within the learning analytics community. The Society of Learning Analytics Research is home to the CrossMMLA Special Interest Group and regularly hosts workshops on MMLA during the Learning Analytics Summer Institute (LASI). In this paper, we articulate a set of 12…
Descriptors: Learning Analytics, Artificial Intelligence, Data Collection, Statistical Inference
Makar, Katie; Allmond, Sue – ZDM: The International Journal on Mathematics Education, 2018
Children have limited exposure to statistical concepts and processes, yet researchers have highlighted multiple benefits of experiences in which they design and/or engage informally with statistical modelling. A study was conducted with a classroom in which students developed and utilised data-based models to respond to the inquiry question,…
Descriptors: Statistics, Mathematical Models, Prediction, Statistical Distributions
Luo, Wen; Li, Haoran; Baek, Eunkyeng; Chen, Siqi; Lam, Kwok Hap; Semma, Brandie – Review of Educational Research, 2021
Multilevel modeling (MLM) is a statistical technique for analyzing clustered data. Despite its long history, the technique and accompanying computer programs are rapidly evolving. Given the complexity of multilevel models, it is crucial for researchers to provide complete and transparent descriptions of the data, statistical analyses, and results.…
Descriptors: Hierarchical Linear Modeling, Multivariate Analysis, Prediction, Research Problems
Chance, Beth; Tintle, Nathan; Reynolds, Shea; Patel, Ajay; Chan, Katherine; Leader, Sean – Statistics Education Research Journal, 2022
Using simulation-based inference (SBI), such as randomization tests, as the primary vehicle for introducing students to the logic and scope of statistical inference has been advocated with the potential of improving student understanding of statistical inference and the statistical investigative process. Moving beyond the individual class…
Descriptors: Mathematics Curriculum, Simulation, Student Characteristics, Prior Learning
Vegetabile, Brian G.; Stout-Oswald, Stephanie A.; Davis, Elysia Poggi; Baram, Tallie Z.; Stern, Hal S. – Journal of Educational and Behavioral Statistics, 2019
Predictability of behavior is an important characteristic in many fields including biology, medicine, marketing, and education. When a sequence of actions performed by an individual can be modeled as a stationary time-homogeneous Markov chain the predictability of the individual's behavior can be quantified by the entropy rate of the process. This…
Descriptors: Markov Processes, Prediction, Behavior, Computation
Hsu, Anne S.; Horng, Andy; Griffiths, Thomas L.; Chater, Nick – Cognitive Science, 2017
Identifying patterns in the world requires noticing not only unusual occurrences, but also unusual absences. We examined how people learn from absences, manipulating the extent to which an absence is expected. People can make two types of inferences from the absence of an event: either the event is possible but has not yet occurred, or the event…
Descriptors: Statistical Inference, Bayesian Statistics, Evidence, Prediction