NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Policymakers1
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing 1 to 15 of 32 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Il Do Ha – Measurement: Interdisciplinary Research and Perspectives, 2024
Recently, deep learning has become a pervasive tool in prediction problems for structured and/or unstructured big data in various areas including science and engineering. In particular, deep neural network models (i.e. a basic core model of deep learning) can be viewed as an extension of statistical models by going through the incorporation of…
Descriptors: Artificial Intelligence, Statistical Analysis, Models, Algorithms
Peer reviewed Peer reviewed
Direct linkDirect link
Xin Guo; Qiang Fu – Sociological Methods & Research, 2024
Grouped and right-censored (GRC) counts have been used in a wide range of attitudinal and behavioural surveys yet they cannot be readily analyzed or assessed by conventional statistical models. This study develops a unified regression framework for the design and optimality of GRC counts in surveys. To process infinitely many grouping schemes for…
Descriptors: Attitude Measures, Surveys, Research Design, Research Methodology
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Senay Kocakoyun Aydogan; Turgut Pura; Fatih Bingül – Malaysian Online Journal of Educational Technology, 2024
In every culture and era, education is considered the most fundamental reality and rule that societies prioritize and deem essential. Throughout the process spanning thousands of years, from the emergence of writing to the present day, education has undergone various forms and formats of change. Education has been a continuous guide for shaping,…
Descriptors: Prediction, Academic Achievement, Artificial Intelligence, Algorithms
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Shabnam Ara S. J.; Tanuja Ramachandriah; Manjula S. Haladappa – Online Learning, 2025
Predicting learner performance with precision is critical within educational systems, offering a basis for tailored interventions and instruction. The advent of big data analytics presents an opportunity to employ Machine Learning (ML) techniques to this end. Real-world data availability is often hampered by privacy concerns, prompting a shift…
Descriptors: Learning Analytics, Privacy, Artificial Intelligence, Regression (Statistics)
Peer reviewed Peer reviewed
Direct linkDirect link
Xia, Xiaona – Interactive Learning Environments, 2023
Interactive learning environments can generate massive learning behavior data and the support of learning behavior big data can ensure the completeness of data analysis and robustness of relationship verification. In this study, learning behaviors are divided into training set and testing set, BP neural network and recurrent Elman network are…
Descriptors: Interaction, Intervention, Student Behavior, Educational Environment
Vincent Dorie; George Perrett; Jennifer L. Hill; Benjamin Goodrich – Grantee Submission, 2022
A wide range of machine-learning-based approaches have been developed in the past decade, increasing our ability to accurately model nonlinear and nonadditive response surfaces. This has improved performance for inferential tasks such as estimating average treatment effects in situations where standard parametric models may not fit the data well.…
Descriptors: Statistical Inference, Causal Models, Artificial Intelligence, Data Analysis
Yao, Yuling; Vehtari, Aki; Gelman, Andrew – Grantee Submission, 2022
When working with multimodal Bayesian posterior distributions, Markov chain Monte Carlo (MCMC) algorithms have difficulty moving between modes, and default variational or mode-based approximate inferences will understate posterior uncertainty. And, even if the most important modes can be found, it is difficult to evaluate their relative weights in…
Descriptors: Bayesian Statistics, Computation, Markov Processes, Monte Carlo Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Ammar, Salwa; Kim, Min Jung; Masoumi, Amir H.; Tomoiaga, Alin – Decision Sciences Journal of Innovative Education, 2023
Over the past few years, academics have undertaken initiatives to bridge the gap between theory and practice in the ever-growing field of business analytics, including implementing real-life student projects in all shapes and forms. Every year since 2015, Manhattan College has invited student teams from across North America and elsewhere in the…
Descriptors: Business, Data Analysis, Business Administration Education, Intercollegiate Cooperation
Peer reviewed Peer reviewed
Direct linkDirect link
Kamdjou, Herve D. Teguim – Open Education Studies, 2023
This article revisits the Mincer earnings function and presents comparable estimates of the average monetary returns associated with an additional year of education across different regions worldwide. In contrast to the traditional Ordinary Least Squares (OLS) method commonly employed in the literature, this study applied a cutting-edge approach…
Descriptors: Outcomes of Education, Artificial Intelligence, Human Capital, Regression (Statistics)
Peer reviewed Peer reviewed
Direct linkDirect link
Hope E. Lackey; Rachel L. Sell; Gilbert L. Nelson; Thomas A. Bryan; Amanda M. Lines; Samuel A. Bryan – Journal of Chemical Education, 2023
The methodology and mathematical treatment of several classic multivariate methods for the analysis of spectroscopic data is demonstrated in a straightforward way that can be used as a basis for teaching an undergraduate introductory course on chemometric analysis. The multivariate techniques of classical least-squares (CLS), principal component…
Descriptors: Chemistry, Data Analysis, Optics, Lighting
Peer reviewed Peer reviewed
Direct linkDirect link
Abdulkadir Palanci; Rabia Meryem Yilmaz; Zeynep Turan – Education and Information Technologies, 2024
This study aims to reveal the main trends and findings of the studies examining the use of learning analytics in distance education. For this purpose, journal articles indexed in the SSCI index in the Web of Science database were reviewed, and a total of 400 journal articles were analysed within the scope of this study. The systematic review…
Descriptors: Learning Analytics, Distance Education, Educational Trends, Periodicals
Peer reviewed Peer reviewed
Verhelst, N. D. – Psychometrika, 1981
A method for the least squares regression of one squared variable on a second squared variable when the relationship between the original variables is linear is given. The problem arises in multidimensional scaling algorithms. (Author/JKS)
Descriptors: Algorithms, Data Analysis, Multidimensional Scaling, Regression (Statistics)
Peer reviewed Peer reviewed
ten Berge, Jos M. F. – Psychometrika, 1991
A globally optimal solution is presented for a class of functions composed of a linear regression function and a penalty function for the sums of squared regression weights. A completing-the-squares approach is used, rather than calculus, because it yields global minimality easily in two of three cases examined. (SLD)
Descriptors: Algorithms, Equations (Mathematics), Mathematical Models, Matrices
Peer reviewed Peer reviewed
Seltzer, Michael H.; And Others – Journal of Educational and Behavioral Statistics, 1996
The Gibbs sampling algorithms presented by M. H. Seltzer (1993) are fully generalized to a broad range of settings in which vectors of random regression parameters in the hierarchical model are assumed multivariate normally or multivariate "t" distributed across groups. The use of a fully Bayesian approach is discussed. (SLD)
Descriptors: Algorithms, Bayesian Statistics, Estimation (Mathematics), Multivariate Analysis
Peer reviewed Peer reviewed
Rubin, Donald B.; Thayer, Dorothy T. – Psychometrika, 1982
The details of EM algorithms for maximum likelihood factor analysis are presented for both the exploratory and confirmatory models. An example is presented to demonstrate potential problems in other approaches to maximum likelihood factor analysis. (Author/JKS)
Descriptors: Algorithms, Factor Analysis, Matrices, Maximum Likelihood Statistics
Previous Page | Next Page »
Pages: 1  |  2  |  3