NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
No Child Left Behind Act 20011
What Works Clearinghouse Rating
Showing 1 to 15 of 64 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Jason A. Schoeneberger; Christopher Rhoads – American Journal of Evaluation, 2025
Regression discontinuity (RD) designs are increasingly used for causal evaluations. However, the literature contains little guidance for conducting a moderation analysis within an RDD context. The current article focuses on moderation with a single binary variable. A simulation study compares: (1) different bandwidth selectors and (2) local…
Descriptors: Regression (Statistics), Causal Models, Evaluation Methods, Multivariate Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Carlos Cinelli; Andrew Forney; Judea Pearl – Sociological Methods & Research, 2024
Many students of statistics and econometrics express frustration with the way a problem known as "bad control" is treated in the traditional literature. The issue arises when the addition of a variable to a regression equation produces an unintended discrepancy between the regression coefficient and the effect that the coefficient is…
Descriptors: Regression (Statistics), Robustness (Statistics), Error of Measurement, Testing Problems
Peer reviewed Peer reviewed
Direct linkDirect link
Philip Haynes; David Alemna – International Journal of Social Research Methodology, 2024
Three quantitative methods are compared for their ability to understand different COVID-19 fatality ratios in 33 OECD countries. Linear regression provides a limited overview without sensitivity to the diversity of cases. Cluster Analysis and Dynamic Patterns Synthesis (DPS) gives scrutiny to the granularity of case similarities and differences,…
Descriptors: COVID-19, Regression (Statistics), Diversity, Multivariate Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Judith Glaesser – International Journal of Social Research Methodology, 2024
Causal asymmetry is a situation where the causal factors under study are more suitable for explaining the outcome than its absence (or vice versa); they do not explain both equally well. In such a situation, presence of a cause leads to presence of the effect, but absence of the cause may not lead to absence of the effect. A conceptual discussion…
Descriptors: Comparative Analysis, Causal Models, Correlation, Foreign Countries
Peer reviewed Peer reviewed
Direct linkDirect link
Sang-June Park; Youjae Yi – Journal of Educational and Behavioral Statistics, 2024
Previous research explicates ordinal and disordinal interactions through the concept of the "crossover point." This point is determined via simple regression models of a focal predictor at specific moderator values and signifies the intersection of these models. An interaction effect is labeled as disordinal (or ordinal) when the…
Descriptors: Interaction, Predictor Variables, Causal Models, Mathematical Models
Peer reviewed Peer reviewed
Direct linkDirect link
Youmi Suk – Asia Pacific Education Review, 2024
Regression discontinuity (RD) designs have gained significant popularity as a quasi-experimental device for evaluating education programs and policies. In this paper, we present a comprehensive review of RD designs, focusing on the continuity-based framework, the most widely adopted RD framework. We first review the fundamental aspects of RD…
Descriptors: Educational Research, Preschool Education, Regression (Statistics), Test Validity
Peer reviewed Peer reviewed
Direct linkDirect link
Myoung-jae Lee; Goeun Lee; Jin-young Choi – Sociological Methods & Research, 2025
A linear model is often used to find the effect of a binary treatment D on a noncontinuous outcome Y with covariates X. Particularly, a binary Y gives the popular "linear probability model (LPM)," but the linear model is untenable if X contains a continuous regressor. This raises the question: what kind of treatment effect does the…
Descriptors: Probability, Least Squares Statistics, Regression (Statistics), Causal Models
Peer reviewed Peer reviewed
Direct linkDirect link
Yuejin Zhou; Wenwu Wang; Tao Hu; Tiejun Tong; Zhonghua Liu – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Causal mediation analysis is a popular approach for investigating whether the effect of an exposure on an outcome is through a mediator to better understand the underlying causal mechanism. In recent literature, mediation analysis with multiple mediators has been proposed for continuous and dichotomous outcomes. In contrast, methods for mediation…
Descriptors: Regression (Statistics), Causal Models, Evaluation Methods, Vignettes
Luke W. Miratrix – Grantee Submission, 2022
We are sometimes forced to use the Interrupted Time Series (ITS) design as an identification strategy for potential policy change, such as when we only have a single treated unit and cannot obtain comparable controls. For example, with recent county- and state-wide criminal justice reform efforts, where judicial bodies have changed bail setting…
Descriptors: Causal Models, Case Studies, Quasiexperimental Design, Monte Carlo Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Bryan Keller; Zach Branson – Asia Pacific Education Review, 2024
Causal inference involves determining whether a treatment (e.g., an education program) causes a change in outcomes (e.g., academic achievement). It is well-known that causal effects are more challenging to estimate than associations. Over the past 50 years, the potential outcomes framework has become one of the most widely used approaches for…
Descriptors: Causal Models, Educational Research, Regression (Statistics), Probability
Vincent Dorie; George Perrett; Jennifer L. Hill; Benjamin Goodrich – Grantee Submission, 2022
A wide range of machine-learning-based approaches have been developed in the past decade, increasing our ability to accurately model nonlinear and nonadditive response surfaces. This has improved performance for inferential tasks such as estimating average treatment effects in situations where standard parametric models may not fit the data well.…
Descriptors: Statistical Inference, Causal Models, Artificial Intelligence, Data Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Ernest C. Davenport Jr.; Mark L. Davison; Kyungin Park – Journal of Educational and Behavioral Statistics, 2024
The following study shows how reparameterizations and constraints of the general linear model can serve to parse quantitative and qualitative aspects of predictors. We demonstrate three different approaches. The study uses data from the High School Longitudinal Study of 2009 on mathematics course-taking and achievement as an example. Results show…
Descriptors: High School Students, Mathematics Instruction, Mathematics Achievement, Grade 9
Peer reviewed Peer reviewed
Direct linkDirect link
Marek Arendarczyk; Tomasz J. Kozubowski; Anna K. Panorska – Journal of Statistics and Data Science Education, 2023
We provide tools for identification and exploration of data with very large variability having power law tails. Such data describe extreme features of processes such as fire losses, flood, drought, financial gain/loss, hurricanes, population of cities, among others. Prediction and quantification of extreme events are at the forefront of the…
Descriptors: Natural Disasters, Probability, Regression (Statistics), Statistical Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Youmi Suk – Journal of Educational and Behavioral Statistics, 2024
Machine learning (ML) methods for causal inference have gained popularity due to their flexibility to predict the outcome model and the propensity score. In this article, we provide a within-group approach for ML-based causal inference methods in order to robustly estimate average treatment effects in multilevel studies when there is cluster-level…
Descriptors: Artificial Intelligence, Causal Models, Statistical Inference, Maximum Likelihood Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Wodtke, Geoffrey T. – Sociological Methods & Research, 2020
Social scientists are often interested in estimating the marginal effects of a time-varying treatment on an end-of-study continuous outcome. With observational data, estimating these effects is complicated by the presence of time-varying confounders affected by prior treatments, which may lead to bias in conventional regression and matching…
Descriptors: Regression (Statistics), Computation, Statistical Analysis, Statistical Bias
Previous Page | Next Page ยป
Pages: 1  |  2  |  3  |  4  |  5