Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 2 |
Since 2016 (last 10 years) | 12 |
Since 2006 (last 20 years) | 28 |
Descriptor
Source
Author
Publication Type
Education Level
Higher Education | 11 |
Postsecondary Education | 9 |
Elementary Secondary Education | 8 |
Secondary Education | 6 |
Elementary Education | 4 |
Grade 6 | 1 |
High Schools | 1 |
Middle Schools | 1 |
Location
Spain | 2 |
Taiwan | 2 |
United Kingdom | 2 |
Brazil | 1 |
Bulgaria | 1 |
Hong Kong | 1 |
South Africa | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Hua, Amy K.; Lakey, Pascale S. J.; Shiraiwa, Manabu – Journal of Chemical Education, 2022
This paper presents MATLAB user interfaces for two multiphase kinetic models: the kinetic double-layer model of aerosol surface chemistry and gas--particle interactions (K2-SURF) and the kinetic multilayer model of aerosol surface and bulk chemistry (KM-SUB). Each interface has simple and user-friendly features that allow undergraduate and…
Descriptors: Chemistry, Science Instruction, Computer Interfaces, Kinetics
Bondaryk, Leslie G.; Hsi, Sherry; Van Doren, Seth – IEEE Transactions on Learning Technologies, 2021
Sensor systems have the potential to make abstract science phenomena concrete for K-12 students. Internet of Things (IoT) sensor systems provide a variety of benefits for modern classrooms, creating the opportunity for global data production, orienting learners to the opportunities and drawbacks of distributed sensor and control systems, and…
Descriptors: Internet, Systems Development, Computer Uses in Education, Secondary School Science
Safadel, Parviz; White, David – TechTrends: Linking Research and Practice to Improve Learning, 2019
Spatial understanding of molecules in molecular biology provides a better understanding of molecules in isolation and relation to their next elements. Augmented reality (AR) has recently been developed as a computer interface that enables the users to see the real world with virtual objects superimposed on it. We report a method that shows the use…
Descriptors: Molecular Biology, College Students, Science Instruction, Computer Interfaces
Navarre, Edward C. – Journal of Chemical Education, 2020
A simple computer interface for controlling a compact spectrograph for use as a spectrophotometer in an undergraduate teaching laboratory was developed. The project was implemented on a Raspberry Pi computer which permits the integration of a light source into the software. The interface was written in Python to facilitate modification by the user…
Descriptors: Chemistry, Science Instruction, College Science, Undergraduate Students
Merkouris, Alexandros; Chorianopoulou, Betty; Chorianopoulos, Konstantinos; Chrissikopoulos, Vassilios – Journal of Science Education and Technology, 2019
Embodied interaction with tangible interactive objects can be beneficial for introducing abstract scientific concepts, especially for young learners. Nevertheless, there is limited comparative evaluation of alternative interaction modalities with contemporary educational technology, such as tablets and robots. In this study, we explore the effects…
Descriptors: Scientific Concepts, Physics, Interaction, Robotics
Li, Yuguang C.; Melenbrink, Elizabeth L.; Cordonier, Guy J.; Boggs, Christopher; Khan, Anupama; Isaac, Morko Kwembur; Nkhonjera, Lameck Kabambalika; Bahati, David; Billinge, Simon J.; Haile, Sossina M.; Kreuter, Rodney A.; Crable, Robert M.; Mallouk, Thomas E. – Journal of Chemical Education, 2018
This paper presents a teaching kit that combines the fabrication of a low-cost microcontroller-based potentiostat and a LabVIEW-generated graphical user interface. The potentiostat enables undergraduate-level students to learn electroanalytical techniques and characterize energy conversion devices such as solar cells. The purpose of this teaching…
Descriptors: Computer Software, Chemistry, Science Instruction, Computer Graphics
Möglich, Andreas – Journal of Chemical Education, 2018
The quantitative evaluation of experimental data and their graphical presentation are integral to teaching and research in chemistry and the life sciences. Data are commonly fitted to physical models, which in all but the simplest cases are expressed as nonlinear mathematical functions. To facilitate data evaluation in both teaching and research…
Descriptors: Least Squares Statistics, Data, Chemistry, Science Instruction
Arrabal-Campos, Francisco M.; Cortés-Villena, Alejandro; Fernández, Ignacio – Journal of Chemical Education, 2017
This paper presents a programming project named NMRviewer that allows students to visualize transformed and processed 1 H NMR data in an accessible, interactive format while allowing instructors to incorporate programming content into the chemistry curricula. Using the MATLAB graphical user interface development environment (GUIDE), students can…
Descriptors: Coding, Programming, Undergraduate Study, Undergraduate Students
Aravind, Vasudeva Rao; McConnell, Marcella Kay – World Journal on Educational Technology: Current Issues, 2018
Educating our future citizens in science and engineering is vitally important to ensure future advancement. Presently, in the light of environmental sustainability, it is critical that students learn concepts relating to energy, its consumption and future demands. In this article, we harness the state of the educational technology, namely…
Descriptors: Intelligent Tutoring Systems, Science Instruction, Energy, Instructional Design
Gregorcic, Bor; Bodin, Madelen – Physics Teacher, 2017
Algodoo (http://www.algodoo.com) is a digital sandbox for physics 2D simulations. It allows students and teachers to easily create simulated "scenes" and explore physics through a user-friendly and visually attractive interface. In this paper, we present different ways in which students and teachers can use Algodoo to visualize and solve…
Descriptors: Physics, Science Instruction, Teaching Methods, Simulation
Almeida, Gustavo de Oliveira; Bastos, Cesar Augusto Rangel – International Journal of Information and Communication Technology Education, 2018
The use of simulators and customized applications for educational use opens new possibilities in the teaching and learning process of the most varied disciplines through computer-mediated interactions. In this context, teachers are developing digital material considering this powerful tool. And the use of educational apps and simulators has…
Descriptors: Computer Oriented Programs, Usability, Physics, Science Instruction
Zurita, Adolfo R. – Journal of Biological Education, 2017
EvoluZion is a forward-in-time genetic simulator developed in Java and designed to perform real time simulations on the evolutionary history of virtual organisms. These model organisms harbour a set of 13 genes that codify an equal number of phenotypic features. These genes change randomly during replication, and mutant genes can have null,…
Descriptors: Computer Simulation, Teaching Methods, Evolution, Science Instruction
Zabunov, Svetoslav S. – European Journal of Physics Education, 2013
The current paper aims at presenting a modern e-learning method and tool that is utilized in teaching physics in the universities. An online stereo 3D simulation is used for e-learning mechanics and specifically the teaching of spherical pendulum as part of the General Physics course for students in the universities. This approach was realized on…
Descriptors: Electronic Learning, Computer Simulation, College Science, Science Instruction
Wadhwa, Ajay – Physics Education, 2012
Some balls which are made of high-quality rubber (an elastomeric) material, such as tennis or squash balls, could be used for the determination of an important property of such materials called resilience. Since a bouncing ball involves a single impact we call this property "rebound resilience" and express it as the ratio of the rebound height to…
Descriptors: Racquet Sports, Intervals, Time, Science Education
Mauser, Michael – Physics Teacher, 2011
Seeing the reflection, refraction, dispersion, absorption, polarization, and scattering or diffraction of light within your own eye makes these properties of light truly personal. There are practical aspects of these within the eye phenomena, such as eye tracking for computer interfaces. They also offer some intriguing diversions, for example,…
Descriptors: Computer Interfaces, Human Body, Optics, Light