NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing 1 to 15 of 112 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
W. Paige Hall; Kevin Cantrell – Journal of Chemical Education, 2024
Human-driven carbon emissions have resulted in increased levels of dissolved carbon dioxide in the Earth's oceans. This dissolved carbon dioxide reacts with water to form carbonic acid, which impacts ocean acidity as well as the solubility of carbonate-containing compounds, with far-reaching impacts on marine ecosystems and the human communities…
Descriptors: Programming Languages, Computer Science Education, Chemistry, Marine Biology
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Emine Turhal; Oktay Bektas – International Journal of Education in Mathematics, Science and Technology, 2025
This research will analyze the issues encountered by two science teachers implementing Arduino-based robotic coding projects. This research employed a case study design. This research has used a criterion sampling group. This study used semi-structured observation, interviews, and video observations as data collection tools. The teachers conducted…
Descriptors: Science Teachers, Teacher Attitudes, Science Instruction, Robotics
Peer reviewed Peer reviewed
Direct linkDirect link
Trofimova, Ellina; Asgharzadeh Kangachar, Shahla; Weynberg, Karen D.; Willows, Robert D.; Jaschke, Paul R. – Biochemistry and Molecular Biology Education, 2023
With the global increase of infections caused by antibiotic-resistant bacterial strains, there is an urgent need for new methods of tackling the issue. Genomic analysis of bacterial strains can help to understand their virulence and antibiotic resistance profile. Bioinformatic skills are in great demand across the biological sciences. We designed…
Descriptors: Genetics, Science Instruction, Microbiology, Information Science
Peer reviewed Peer reviewed
Direct linkDirect link
Ardith D. Bravenec; Karen D. Ward – Journal of Chemical Education, 2023
Chemistry simulations using interactive graphic user interfaces (GUIs) represent uniquely effective and safe tools to support multidimensional learning. Computer literacy and coding skills have become increasingly important in the chemical sciences. In response to both of these facts, a series of Jupyter notebooks hosted on Google Colaboratory…
Descriptors: Chemistry, Interaction, Computer Simulation, Undergraduate Students
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Marco Bortoli; Laura Orian – Journal of Chemical Education, 2023
Molecules and Computer: Chemistry Calculations in Class (MC[superscript 4]) is a computational laboratory intended for final-year high school or undergraduate students. The topic is the antioxidant potential of anthocyanidins, which is chemically related to their radical scavenging action via the mechanism of hydrogen atom transfer (HAT). This…
Descriptors: Chemistry, Science Instruction, Undergraduate Students, High School Students
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Tolga Kurt; Burcu Anilan – Shanlax International Journal of Education, 2024
This study aims to determine the opinions of science teachers on robotics coding, which is one of the prominent applications in recent times and is expected to be integrated into education. The research was designed as a case study, one of the qualitative research methods. The study group of the research consists of 12 science teachers.…
Descriptors: Robotics, Science Teachers, Science Instruction, Usability
Peer reviewed Peer reviewed
Direct linkDirect link
Ayalew, Mentewab; Hylton, Derrick; Sistrunk, Jeticia; Melton, James; Johnson, Kiandra; Voit, Eberhard – PRIMUS, 2022
The integration of biology with mathematics and computer science mandates the training of students capable of comfortably navigating among these fields. We address this formidable pedagogical challenge with the creation of transdisciplinary modules that guide students toward solving realistic problems with methods from different disciplines.…
Descriptors: Biology, Science Instruction, Mathematics Instruction, Interdisciplinary Approach
Peer reviewed Peer reviewed
Direct linkDirect link
Tofel-Grehl, Colby; Searle, Kristin; Ball, Douglas; Jeong, Soojeong – Contemporary Issues in Technology and Teacher Education (CITE Journal), 2023
As computing becomes an essential component of professional practice across science, technology, engineering, and mathematics (STEM) fields, integration of computing across content areas in K-12 classrooms is also becoming important. Particularly within science classrooms, computer science and computational thinking (CS/CT) are novel and necessary…
Descriptors: Science Instruction, Physics, Elementary Secondary Education, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
W. Brian Lane; Terrie M. Galanti; X. L. Rozas – Journal for STEM Education Research, 2023
Integrating computational thinking (CT) into STEM disciplines requires secondary teachers to develop their pedagogical content knowledge of computing and content integration. Experienced teachers who choose to integrate CT in their secondary STEM courses may struggle in the same ways as novice teachers as they learn about programming and its…
Descriptors: Physics, Teaching Methods, Grounded Theory, Capacity Building
Peer reviewed Peer reviewed
Direct linkDirect link
Kristy A. Robinson; So Yeon Lee – Journal of Experimental Education, 2025
Students vary in their perceptions of teachers' motivational supports, even within the same classroom, but it is unclear why this is the case. To enable the design of equitable environments and understand the theoretical nature of motivational climate, this study explored demographic differences in university students' perceptions of instruction…
Descriptors: Foreign Countries, STEM Education, Undergraduate Students, Introductory Courses
Peer reviewed Peer reviewed
Direct linkDirect link
Amanda Peel; Sugat Dabholkar; Gabriella Anton; Mike Horn; Uri Wilensky – Computer Science Education, 2024
Background and Context: To better reflect the computational nature of STEM disciplines and deepen learning of science content computational thinking (CT) should be integrated in science curricula. Teachers have a critical role in supporting effective student learning with CT integrated curricula in classroom settings. Objective: Our team worked…
Descriptors: Biology, Computer Science Education, Science Instruction, Thinking Skills
Peer reviewed Peer reviewed
Direct linkDirect link
Anna Donhauser; Philipp Bitzenbauer; Linda Qerimi; Stefan Heusler; Stefan Küchemann; Jochen Kuhn; Malte S. Ubben – Physical Review Physics Education Research, 2024
The present review intends to show the current state of teaching quantum-related content, to analyze and compare its learning efficiency, and to give a systemized overview of quantum-educational activities in the last years. We focus on teaching and learning elements, their innovative tools, and process-oriented studies that are empirically…
Descriptors: Physics, Science Instruction, Quantum Mechanics, Comparative Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Bush, Eliot C.; Adolph, Stephen C.; Donaldson-Matasci, Matina C.; Hur, Jae; Schulz, Danae – Journal of College Science Teaching, 2021
This paper describes an introductory biology course for undergraduates that heavily incorporates quantitative problem solving in activities and homework assignments. The course is broken up into a series of units, each organized around a motivating biological question or theme. Homework assignments address the theme or question, and typically…
Descriptors: Biology, Science Instruction, Teaching Methods, Problem Solving
Peer reviewed Peer reviewed
Direct linkDirect link
Justin Gambrell; Eric Brewe – Physical Review Physics Education Research, 2024
Computational thinking in physics has many different forms, definitions, and implementations depending on the level of physics or the institution it is presented in. To better integrate computational thinking in introductory physics, we need to understand what physicists find important about computational thinking in introductory physics. We…
Descriptors: Physics, Introductory Courses, Science Instruction, Thinking Skills
Peer reviewed Peer reviewed
Direct linkDirect link
Phillips, A. M.; Gouvea, E. J.; Gravel, B. E.; Beachemin, P. -H.; Atherton, T. J. – Physical Review Physics Education Research, 2023
Computation is intertwined with essentially all aspects of physics research and is invaluable for physicists' careers. Despite its disciplinary importance, integration of computation into physics education remains a challenge and, moreover, has tended to be constructed narrowly as a route to solving physics problems. Here, we broaden Physics…
Descriptors: Physics, Science Instruction, Teaching Methods, Models
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7  |  8