Publication Date
In 2025 | 3 |
Since 2024 | 5 |
Since 2021 (last 5 years) | 10 |
Since 2016 (last 10 years) | 30 |
Since 2006 (last 20 years) | 31 |
Descriptor
Source
Author
Kieser, Meinhard | 2 |
Adam C. Sales | 1 |
Alam, Fahad | 1 |
Alex Goodman | 1 |
Algina, James | 1 |
Aydin, Burak | 1 |
Ben Kelcey | 1 |
Bennetts, Margherita | 1 |
Beth Chance | 1 |
Boet, Sylvain | 1 |
Borland, David | 1 |
More ▼ |
Publication Type
Journal Articles | 31 |
Reports - Research | 28 |
Reports - Descriptive | 3 |
Information Analyses | 2 |
Education Level
Higher Education | 7 |
Postsecondary Education | 6 |
Elementary Education | 2 |
High Schools | 2 |
Early Childhood Education | 1 |
Grade 1 | 1 |
Grade 2 | 1 |
Grade 3 | 1 |
Primary Education | 1 |
Secondary Education | 1 |
Audience
Location
Canada | 2 |
Estonia | 1 |
North Carolina | 1 |
Puerto Rico | 1 |
United States | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Beth Chance; Karen McGaughey; Sophia Chung; Alex Goodman; Soma Roy; Nathan Tintle – Journal of Statistics and Data Science Education, 2025
"Simulation-based inference" is often considered a pedagogical strategy for helping students develop inferential reasoning, for example, giving them a visual and concrete reference for deciding whether the observed statistic is unlikely to happen by chance alone when the null hypothesis is true. In this article, we highlight for teachers…
Descriptors: Simulation, Sampling, Randomized Controlled Trials, Hypothesis Testing
Huibin Zhang; Zuchao Shen; Walter L. Leite – Journal of Experimental Education, 2025
Cluster-randomized trials have been widely used to evaluate the treatment effects of interventions on student outcomes. When interventions are implemented by teachers, researchers need to account for the nested structure in schools (i.e., students are nested within teachers nested within schools). Schools usually have a very limited number of…
Descriptors: Sample Size, Multivariate Analysis, Randomized Controlled Trials, Correlation
Charlotte Z. Mann; Adam C. Sales; Johann A. Gagnon-Bartsch – Grantee Submission, 2025
Combining observational and experimental data for causal inference can improve treatment effect estimation. However, many observational data sets cannot be released due to data privacy considerations, so one researcher may not have access to both experimental and observational data. Nonetheless, a small amount of risk of disclosing sensitive…
Descriptors: Causal Models, Statistical Analysis, Privacy, Risk
Glaman, Ryan; Chen, Qi; Henson, Robin K. – Journal of Experimental Education, 2022
This study compared three approaches for handling a fourth level of nesting when analyzing cluster-randomized trial (CRT) data. Although CRT data analyses may include repeated measures, individual, and cluster levels, there may be an additional fourth level that is typically ignored. This study examined the impact of ignoring this fourth level,…
Descriptors: Randomized Controlled Trials, Hierarchical Linear Modeling, Data Analysis, Simulation
Ilja Cornelisz; Chris van Klaveren – npj Science of Learning, 2022
Longitudinal randomized controlled trials generally assign individuals randomly to interventions at baseline and then evaluate how differential average treatment effects evolve over time. This study shows that longitudinal settings could benefit from "Recurrent Individual Treatment Assignment" ("RITA") instead, particularly in…
Descriptors: Longitudinal Studies, Randomized Controlled Trials, Intervention, Assignments
Kyle Cox; Ben Kelcey; Hannah Luce – Journal of Experimental Education, 2024
Comprehensive evaluation of treatment effects is aided by considerations for moderated effects. In educational research, the combination of natural hierarchical structures and prevalence of group-administered or shared facilitator treatments often produces three-level partially nested data structures. Literature details planning strategies for a…
Descriptors: Randomized Controlled Trials, Monte Carlo Methods, Hierarchical Linear Modeling, Educational Research
Yao, Minghong; Wang, Yuning; Ren, Yan; Jia, Yulong; Zou, Kang; Li, Ling; Sun, Xin – Research Synthesis Methods, 2023
Rare events meta-analyses of randomized controlled trials (RCTs) are often underpowered because the outcomes are infrequent. Real-world evidence (RWE) from non-randomized studies may provide valuable complementary evidence about the effects of rare events, and there is growing interest in including such evidence in the decision-making process.…
Descriptors: Evidence, Meta Analysis, Randomized Controlled Trials, Decision Making
Proctor, Tanja; Zimmermann, Samuel; Seide, Svenja; Kieser, Meinhard – Research Synthesis Methods, 2022
During drug development, a biomarker is sometimes identified as separating a patient population into those with more and those with less benefit from evaluated treatments. Consequently, later studies might be targeted, while earlier ones are performed in mixed patient populations. This poses a challenge in evidence synthesis, especially if only…
Descriptors: Comparative Analysis, Meta Analysis, Patients, Medical Research
Pashley, Nicole E.; Miratrix, Luke W. – Journal of Educational and Behavioral Statistics, 2021
Evaluating blocked randomized experiments from a potential outcomes perspective has two primary branches of work. The first focuses on larger blocks, with multiple treatment and control units in each block. The second focuses on matched pairs, with a single treatment and control unit in each block. These literatures not only provide different…
Descriptors: Causal Models, Statistical Inference, Research Methodology, Computation
Liang, Xinya; Kamata, Akihito; Li, Ji – Educational and Psychological Measurement, 2020
One important issue in Bayesian estimation is the determination of an effective informative prior. In hierarchical Bayes models, the uncertainty of hyperparameters in a prior can be further modeled via their own priors, namely, hyper priors. This study introduces a framework to construct hyper priors for both the mean and the variance…
Descriptors: Bayesian Statistics, Randomized Controlled Trials, Effect Size, Sampling
Joshua B. Gilbert; James S. Kim; Luke W. Miratrix – Applied Measurement in Education, 2024
Longitudinal models typically emphasize between-person predictors of change but ignore how growth varies "within" persons because each person contributes only one data point at each time. In contrast, modeling growth with multi-item assessments allows evaluation of how relative item performance may shift over time. While traditionally…
Descriptors: Vocabulary Development, Item Response Theory, Test Items, Student Development
Hasegawa, Raiden B.; Deshpande, Sameer K.; Small, Dylan S.; Rosenbaum, Paul R. – Journal of Educational and Behavioral Statistics, 2020
Causal effects are commonly defined as comparisons of the potential outcomes under treatment and control, but this definition is threatened by the possibility that either the treatment or the control condition is not well defined, existing instead in more than one version. This is often a real possibility in nonexperimental or observational…
Descriptors: Causal Models, Inferences, Randomized Controlled Trials, Experimental Groups
Pedder, Hugo; Boucher, Martin; Dias, Sofia; Bennetts, Margherita; Welton, Nicky J. – Research Synthesis Methods, 2020
Time-course model-based network meta-analysis (MBNMA) has been proposed as a framework to combine treatment comparisons from a network of randomized controlled trials reporting outcomes at multiple time-points. This can explain heterogeneity/inconsistency that arises by pooling studies with different follow-up times and allow inclusion of studies…
Descriptors: Simulation, Randomized Controlled Trials, Meta Analysis, Comparative Analysis
Uhlmann, Lorenz; Jensen, Katrin; Kieser, Meinhard – Research Synthesis Methods, 2017
Network meta-analysis is becoming a common approach to combine direct and indirect comparisons of several treatment arms. In recent research, there have been various developments and extensions of the standard methodology. Simultaneously, cluster randomized trials are experiencing an increased popularity, especially in the field of health services…
Descriptors: Bayesian Statistics, Network Analysis, Meta Analysis, Randomized Controlled Trials
Sales, Adam C.; Hansen, Ben B. – Journal of Educational and Behavioral Statistics, 2020
Conventionally, regression discontinuity analysis contrasts a univariate regression's limits as its independent variable, "R," approaches a cut point, "c," from either side. Alternative methods target the average treatment effect in a small region around "c," at the cost of an assumption that treatment assignment,…
Descriptors: Regression (Statistics), Computation, Statistical Inference, Robustness (Statistics)