Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 0 |
Since 2016 (last 10 years) | 7 |
Since 2006 (last 20 years) | 51 |
Descriptor
Source
Author
Engelhard, George, Jr. | 5 |
Borsboom, Denny | 3 |
Fisher, William P., Jr. | 2 |
Howell, Roy D. | 2 |
Kyngdon, Andrew | 2 |
Lee, Nick | 2 |
Maris, Gunter | 2 |
Markus, Keith A. | 2 |
Molenaar, Peter C. M. | 2 |
Rupp, Andre A. | 2 |
Wang, Jue | 2 |
More ▼ |
Publication Type
Education Level
Elementary Secondary Education | 2 |
Adult Education | 1 |
Higher Education | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Zumbo, Bruno D.; Kroc, Edward – Educational and Psychological Measurement, 2019
Chalmers recently published a critique of the use of ordinal a[alpha] proposed in Zumbo et al. as a measure of test reliability in certain research settings. In this response, we take up the task of refuting Chalmers' critique. We identify three broad misconceptions that characterize Chalmers' criticisms: (1) confusing assumptions with…
Descriptors: Test Reliability, Statistical Analysis, Misconceptions, Mathematical Models
Lee, Nick; Chamberlain, Laura – Measurement: Interdisciplinary Research and Perspectives, 2016
Aguirre-Urreta, Rönkkö, and Marakas' (2016) paper in "Measurement: Interdisciplinary Research and Perspectives" (hereafter referred to as ARM2016) is an important and timely piece of scholarship, in that it provides strong analytic support to the growing theoretical literature that questions the underlying ideas behind causal and…
Descriptors: Measurement, Causal Models, Formative Evaluation, Evaluation Methods
Wang, Jue; Engelhard, George, Jr. – Measurement: Interdisciplinary Research and Perspectives, 2016
The authors of the focus article describe an important issue related to the use and interpretation of causal indicators within the context of structural equation modeling (SEM). In the focus article, the authors illustrate with simulated data the effects of omitting a causal indicator. Since SEMs are used extensively in the social and behavioral…
Descriptors: Structural Equation Models, Measurement, Causal Models, Construct Validity
Howell, Roy D.; Breivik, Einar – Measurement: Interdisciplinary Research and Perspectives, 2016
In this article, Roy Howell, and Einar Breivik, congratulate Aguirre-Urreta, M. I., Rönkkö, M., & Marakas, G. M., for their work (2016) "Omission of Causal Indicators: Consequences and Implications for Measurement," Measurement: Interdisciplinary Research and Perspectives, 14(3), 75-97. doi:10.1080/15366367.2016.1205935. They call it…
Descriptors: Causal Models, Measurement, Predictor Variables
Aguirre-Urreta, Miguel I.; Rönkkö, Mikko; Marakas, George M. – Measurement: Interdisciplinary Research and Perspectives, 2016
The authors begin this brief rejoinder by thanking all the authors who took time to provide comments on their work, which appeared in "Measurement: Interdisciplinary Research and Perspectives" v14 n3 2016. All commentaries appear to suggest that causal indicators cannot be used for measurement but differ in how strongly this conclusion…
Descriptors: Causal Models, Measurement, Research Needs
Guyon, Hervé; Tensaout, Mouloud – Measurement: Interdisciplinary Research and Perspectives, 2015
This article is a commentary on the Focus Article, "Interpretational Confounding or Confounded Interpretations of Causal Indicators?" and a commentary that was published in issue 12(4) 2014 of "Measurement: Interdisciplinary Research & Perspectives". The authors challenge two claims: (a) Bainter and Bollen argue that the…
Descriptors: Causal Models, Measurement, Data Interpretation, Structural Equation Models
Markus, Keith A. – Measurement: Interdisciplinary Research and Perspectives, 2014
In a series of articles and comments, Kenneth Bollen and his collaborators have incrementally refined an account of structural equation models that (a) model a latent variable as the effect of several observed variables and (b) carry an interpretation of the observed variables as, in some sense, measures of the latent variable that they cause.…
Descriptors: Measurement, Structural Equation Models, Statistical Analysis, Causal Models
Wang, Jue; Engelhard, George, Jr.; Lu, Zhenqiu – Measurement: Interdisciplinary Research and Perspectives, 2014
The authors of the focus article in this issue have emphasized the continuing confusion among some researchers regarding various indicators used in structural equation models (SEMs). Their major claim is that causal indicators are not inherently unstable, and even if they are unstable they are at least not more unstable than other types of…
Descriptors: Structural Equation Models, Measurement, Statistical Analysis, Causal Models
Cadogan, John W.; Lee, Nick – Measurement: Interdisciplinary Research and Perspectives, 2016
In this commentary from Issue 14, n3, authors John Cadogan and Nick Lee applaud the paper by Aguirre-Urreta, Rönkkö, and Marakas "Measurement: Interdisciplinary Research and Perspectives", 14(3), 75-97 (2016), since their explanations and simulations work toward demystifying causal indicator models, which are often used by scholars…
Descriptors: Causal Models, Measurement, Validity, Statistical Analysis
Rhemtulla, Mijke; van Bork, Riet; Borsboom, Denny – Measurement: Interdisciplinary Research and Perspectives, 2015
In this commentary, Mijke Rhemtulla, Riet van Bork, and Denny Borsboom write that they were delighted to see Bainter and Bollen's paper as a focus article in "Measurement." In their view, psychological researchers who use SEM rely too reflexively on reflective measurement, without sufficiently considering whether their indicators are…
Descriptors: Causal Models, Measurement, Data Interpretation, Statistical Data
Markus, Keith A. – Measurement: Interdisciplinary Research and Perspectives, 2016
In their 2016 work, Aguirre-Urreta et al. provided a contribution to the literature on causal measurement models that enhances clarity and stimulates further thinking. Aguirre-Urreta et al. presented a form of statistical identity involving mapping onto the portion of the parameter space involving the nomological net, relationships between the…
Descriptors: Causal Models, Measurement, Criticism, Concept Mapping
McCoach, D. Betsy; Kenny, David A. – Measurement: Interdisciplinary Research and Perspectives, 2014
In this commentary, Betsy McCoach and David Kenny state they are in general agreement with Bainter and Bollen (this issue) that causal indicators are not inherently unstable. Herein, they outline several similarities and differences between latent variables with reflective and causal indicators. In their examination of the two models, they find…
Descriptors: Causal Models, Statistical Analysis, Measurement
Bolsinova, Maria; Tijmstra, Jesper – Measurement: Interdisciplinary Research and Perspectives, 2015
Goldhammer (this issue) proposes an interesting approach to dealing with the speededness of item responses. Rather than modeling speed as a latent variable that varies from person to person, he proposes to use experimental conditions that are expected to fix the speed, thereby eliminating individual differences on this dimension in order to make…
Descriptors: Ability, Reaction Time, Measurement, Models
Confrey, Jere; Jones, R. Seth; Gianopulos, Garron – Measurement: Interdisciplinary Research and Perspectives, 2015
Briggs and Peck make a compelling case for creating new, more intuitive measures of learning, based on creating vertical scales using learning trajectories (LT) in place of "domain sampling." We believe that the importance of creating measurement scales that coordinate recognizable landmarks in learning trajectories with interval scales…
Descriptors: Measurement, Educational Assessment, High Stakes Tests, Scaling
Howell, Roy D. – Measurement: Interdisciplinary Research and Perspectives, 2014
Building on the work of Bollen (2007) and Bollen & Bauldry (2011), Bainter and Bollen (this issue) clarifies several points of confusion in the literature regarding causal indicator models. This author would certainly agree that the effect indicator (reflective) measurement model is inappropriate for some indicators (such as the social…
Descriptors: Statistical Analysis, Measurement, Causal Models, Data Interpretation