Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 0 |
Since 2016 (last 10 years) | 3 |
Since 2006 (last 20 years) | 9 |
Descriptor
Author
Engelhard, George, Jr. | 2 |
Markus, Keith A. | 2 |
Wang, Jue | 2 |
Cadogan, John W. | 1 |
Grimm, Kevin J. | 1 |
Howell, Roy D. | 1 |
Imbens, Guido W. | 1 |
Kenny, David A. | 1 |
Lee, Nick | 1 |
Lu, Zhenqiu | 1 |
McCoach, D. Betsy | 1 |
More ▼ |
Publication Type
Journal Articles | 9 |
Opinion Papers | 9 |
Reports - Evaluative | 7 |
Reports - Descriptive | 1 |
Education Level
Audience
Researchers | 1 |
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Cadogan, John W.; Lee, Nick – Measurement: Interdisciplinary Research and Perspectives, 2016
In this commentary from Issue 14, n3, authors John Cadogan and Nick Lee applaud the paper by Aguirre-Urreta, Rönkkö, and Marakas "Measurement: Interdisciplinary Research and Perspectives", 14(3), 75-97 (2016), since their explanations and simulations work toward demystifying causal indicator models, which are often used by scholars…
Descriptors: Causal Models, Measurement, Validity, Statistical Analysis
Wang, Jue; Engelhard, George, Jr. – Measurement: Interdisciplinary Research and Perspectives, 2016
The authors of the focus article describe an important issue related to the use and interpretation of causal indicators within the context of structural equation modeling (SEM). In the focus article, the authors illustrate with simulated data the effects of omitting a causal indicator. Since SEMs are used extensively in the social and behavioral…
Descriptors: Structural Equation Models, Measurement, Causal Models, Construct Validity
Markus, Keith A. – Measurement: Interdisciplinary Research and Perspectives, 2016
In their 2016 work, Aguirre-Urreta et al. provided a contribution to the literature on causal measurement models that enhances clarity and stimulates further thinking. Aguirre-Urreta et al. presented a form of statistical identity involving mapping onto the portion of the parameter space involving the nomological net, relationships between the…
Descriptors: Causal Models, Measurement, Criticism, Concept Mapping
McCoach, D. Betsy; Kenny, David A. – Measurement: Interdisciplinary Research and Perspectives, 2014
In this commentary, Betsy McCoach and David Kenny state they are in general agreement with Bainter and Bollen (this issue) that causal indicators are not inherently unstable. Herein, they outline several similarities and differences between latent variables with reflective and causal indicators. In their examination of the two models, they find…
Descriptors: Causal Models, Statistical Analysis, Measurement
Markus, Keith A. – Measurement: Interdisciplinary Research and Perspectives, 2014
In a series of articles and comments, Kenneth Bollen and his collaborators have incrementally refined an account of structural equation models that (a) model a latent variable as the effect of several observed variables and (b) carry an interpretation of the observed variables as, in some sense, measures of the latent variable that they cause.…
Descriptors: Measurement, Structural Equation Models, Statistical Analysis, Causal Models
Howell, Roy D. – Measurement: Interdisciplinary Research and Perspectives, 2014
Building on the work of Bollen (2007) and Bollen & Bauldry (2011), Bainter and Bollen (this issue) clarifies several points of confusion in the literature regarding causal indicator models. This author would certainly agree that the effect indicator (reflective) measurement model is inappropriate for some indicators (such as the social…
Descriptors: Statistical Analysis, Measurement, Causal Models, Data Interpretation
West, Stephen G.; Grimm, Kevin J. – Measurement: Interdisciplinary Research and Perspectives, 2014
These authors agree with Bainter and Bollen that causal effects represents a useful measurement structure in some applications. The structure of the science of the measurement problem should determine the model; the measurement model should not determine the science. They also applaud Bainter and Bollen's important reminder that the full…
Descriptors: Causal Models, Measurement, Test Theory, Statistical Analysis
Wang, Jue; Engelhard, George, Jr.; Lu, Zhenqiu – Measurement: Interdisciplinary Research and Perspectives, 2014
The authors of the focus article in this issue have emphasized the continuing confusion among some researchers regarding various indicators used in structural equation models (SEMs). Their major claim is that causal indicators are not inherently unstable, and even if they are unstable they are at least not more unstable than other types of…
Descriptors: Structural Equation Models, Measurement, Statistical Analysis, Causal Models
Imbens, Guido W. – Psychological Methods, 2010
In Shadish (2010) and West and Thoemmes (2010), the authors contrasted 2 approaches to causality. The first originated in the psychology literature and is associated with work by Campbell (e.g., Shadish, Cook, & Campbell, 2002), and the second has its roots in the statistics literature and is associated with work by Rubin (e.g., Rubin, 2006). In…
Descriptors: Economics, Research Methodology, Causal Models, Inferences