NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 11 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Tenko Raykov; George Marcoulides; Randall Schumacker – Measurement: Interdisciplinary Research and Perspectives, 2024
An application of Bayesian factor analysis for evaluation of scale reliability is discussed, which is developed within the framework of latent variable modeling. The method permits direct point and interval estimation of the reliability coefficient of multiple-component measuring instruments using Bayesian inference. The approach allows also point…
Descriptors: Reliability, Bayesian Statistics, Measurement Techniques, Computer Software
Peer reviewed Peer reviewed
Direct linkDirect link
Tenko Raykov; George Marcoulides; James Anthony; Natalja Menold – Measurement: Interdisciplinary Research and Perspectives, 2024
A Bayesian statistics-based approach is discussed that can be used for direct evaluation of the popular Cronbach's coefficient alpha as an internal consistency index for multiple-component measuring instruments, as well as for testing its identity to scale reliability. The method represents an application of confirmatory factor analysis within the…
Descriptors: Reliability, Factor Analysis, Bayesian Statistics, Measurement Techniques
Peer reviewed Peer reviewed
Direct linkDirect link
Tihomir Asparouhov; Bengt Muthén – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Penalized structural equation models (PSEM) is a new powerful estimation technique that can be used to tackle a variety of difficult structural estimation problems that can not be handled with previously developed methods. In this paper we describe the PSEM framework and illustrate the quality of the method with simulation studies.…
Descriptors: Structural Equation Models, Computation, Factor Analysis, Measurement Techniques
Peer reviewed Peer reviewed
Direct linkDirect link
Chunhua Cao; Yan Wang; Eunsook Kim – Structural Equation Modeling: A Multidisciplinary Journal, 2025
Multilevel factor mixture modeling (FMM) is a hybrid of multilevel confirmatory factor analysis (CFA) and multilevel latent class analysis (LCA). It allows researchers to examine population heterogeneity at the within level, between level, or both levels. This tutorial focuses on explicating the model specification of multilevel FMM that considers…
Descriptors: Hierarchical Linear Modeling, Factor Analysis, Nonparametric Statistics, Statistical Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Edoardo Saccenti – Teaching Statistics: An International Journal for Teachers, 2024
Principal Component Analysis (PCA) is a powerful statistical technique for reducing the complexity of data and making patterns and relationships within the data more easily understandable. By using PCA, students can learn to identify the most important features of a data set, visualize relationships between variables, and make informed decisions…
Descriptors: Factor Analysis, Data Analysis, Information Literacy, Visualization
Peer reviewed Peer reviewed
Direct linkDirect link
Tenko Raykov; Lisa Calvocoressi; Randall E. Schumacker – Measurement: Interdisciplinary Research and Perspectives, 2024
This paper is concerned with the process of selecting between the increasingly popular bi-factor model and the second-order factor model in measurement research. It is indicated that in certain settings widely used in empirical studies, the second-order model is nested in the bi-factor model and obtained from the latter after imposing appropriate…
Descriptors: Factor Analysis, Decision Making, Computer Software, Measurement Techniques
Peer reviewed Peer reviewed
Direct linkDirect link
Alexander von Eye; Wolfgang Wiedermann – Merrill-Palmer Quarterly: A Peer Relations Journal, 2024
In this article, we pursue two points of discussion. First, a new illustration is presented of the person-oriented tenet according to which it can be hazardous to generalize to the individual results that are based on the analysis of aggregated data. Second, it is illustrated that taking into account serial dependence information can result in not…
Descriptors: Research Methodology, Generalizability Theory, Generalization, Multivariate Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Jon-Paul Paolino – Teaching Statistics: An International Journal for Teachers, 2024
This article presents a novel approach to introducing principal component analysis (PCA), using summary tables and descriptive statistics. Given its applicability across a variety of academic disciplines, this topic offers abundant opportunity for class discussion and activities. However, teaching PCA in an introductory class can be challenging…
Descriptors: Statistics Education, Factor Analysis, Teaching Methods, Introductory Courses
Peer reviewed Peer reviewed
Direct linkDirect link
Philipp Sterner; Kim De Roover; David Goretzko – Structural Equation Modeling: A Multidisciplinary Journal, 2025
When comparing relations and means of latent variables, it is important to establish measurement invariance (MI). Most methods to assess MI are based on confirmatory factor analysis (CFA). Recently, new methods have been developed based on exploratory factor analysis (EFA); most notably, as extensions of multi-group EFA, researchers introduced…
Descriptors: Error of Measurement, Measurement Techniques, Factor Analysis, Structural Equation Models
Peer reviewed Peer reviewed
Direct linkDirect link
Meike Akveld; George Kinnear – International Journal of Mathematical Education in Science and Technology, 2024
Many universities use diagnostic tests to assess incoming students' preparedness for mathematics courses. Diagnostic test results can help students to identify topics where they need more practice and give lecturers a summary of strengths and weaknesses in their class. We demonstrate a process that can be used to make improvements to a mathematics…
Descriptors: Mathematics Tests, Diagnostic Tests, Test Items, Item Analysis
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Teck Kiang Tan – Practical Assessment, Research & Evaluation, 2024
The procedures of carrying out factorial invariance to validate a construct were well developed to ensure the reliability of the construct that can be used across groups for comparison and analysis, yet mainly restricted to the frequentist approach. This motivates an update to incorporate the growing Bayesian approach for carrying out the Bayesian…
Descriptors: Bayesian Statistics, Factor Analysis, Programming Languages, Reliability