NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 6 results Save | Export
Yujiao Mai; Ziqian Xu; Zhiyong Zhang; Ke-Hai Yuan – Grantee Submission, 2023
Structural equation modeling (SEM) is widely used in behavioral, social, and education research. Drawing publication-ready path diagrams for SEM is not a pleasant task with the existing software. The article introduces an open-source web-based graphical application, "semdiag," for drawing WYSIWYG SEM path diagrams interactively. The…
Descriptors: Open Source Technology, Web 2.0 Technologies, Freehand Drawing, Path Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Melissa G. Wolf; Daniel McNeish – Grantee Submission, 2023
To evaluate the fit of a confirmatory factor analysis model, researchers often rely on fit indices such as SRMR, RMSEA, and CFI. These indices are frequently compared to benchmark values of 0.08, 0.06, and 0.96, respectively, established by Hu and Bentler (1999). However, these indices are affected by model characteristics and their sensitivity to…
Descriptors: Programming Languages, Cutting Scores, Benchmarking, Factor Analysis
Merkle, Edgar C.; Fitzsimmons, Ellen; Uanhoro, James; Goodrich, Ben – Grantee Submission, 2021
Structural equation models comprise a large class of popular statistical models, including factor analysis models, certain mixed models, and extensions thereof. Model estimation is complicated by the fact that we typically have multiple interdependent response variables and multiple latent variables (which may also be called random effects or…
Descriptors: Bayesian Statistics, Structural Equation Models, Psychometrics, Factor Analysis
Corlatescu, Dragos-Georgian; Dascalu, Mihai; McNamara, Danielle S. – Grantee Submission, 2021
Reading comprehension is key to knowledge acquisition and to reinforcing memory for previous information. While reading, a mental representation is constructed in the reader's mind. The mental model comprises the words in the text, the relations between the words, and inferences linking to concepts in prior knowledge. The automated model of…
Descriptors: Reading Comprehension, Memory, Inferences, Syntax
Carpenter, Bob; Gelman, Andrew; Hoffman, Matthew D.; Lee, Daniel; Goodrich, Ben; Betancourt, Michael; Brubaker, Marcus A.; Guo, Jiqiang; Li, Peter; Riddell, Allen – Grantee Submission, 2017
Stan is a probabilistic programming language for specifying statistical models. A Stan program imperatively defines a log probability function over parameters conditioned on specified data and constants. As of version 2.14.0, Stan provides full Bayesian inference for continuous-variable models through Markov chain Monte Carlo methods such as the…
Descriptors: Programming Languages, Probability, Bayesian Statistics, Monte Carlo Methods
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Olsen, Jennifer K.; Belenky, Daniel M.; Aleven, Vincent; Rummel, Nikol; Sewall, Jonathan; Ringenberg, Michael – Grantee Submission, 2013
Authoring tools for Intelligent Tutoring System (ITS) have been shown to decrease the amount of time that it takes to develop an ITS. However, most of these tools currently do not extend to collaborative ITSs. In this paper, we illustrate an extension to the Cognitive Tutor Authoring Tools (CTAT) to allow for development of collaborative ITSs that…
Descriptors: Intelligent Tutoring Systems, Programming Languages, Fractions, Learning Processes