Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 0 |
Since 2016 (last 10 years) | 3 |
Since 2006 (last 20 years) | 3 |
Descriptor
Source
Grantee Submission | 3 |
Author
Betancourt, Michael | 1 |
Brubaker, Marcus A. | 1 |
Carpenter, Bob | 1 |
Feller, Avi | 1 |
Gelman, Andrew | 1 |
Goodrich, Ben | 1 |
Greif, Evan | 1 |
Guo, Jiqiang | 1 |
Ho, Nhat | 1 |
Hoffman, Matthew D. | 1 |
Lee, Daniel | 1 |
More ▼ |
Publication Type
Reports - Descriptive | 3 |
Journal Articles | 2 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
Early Childhood Longitudinal… | 1 |
What Works Clearinghouse Rating
Feller, Avi; Greif, Evan; Ho, Nhat; Miratrix, Luke; Pillai, Natesh – Grantee Submission, 2019
Principal stratification is a widely used framework for addressing post-randomization complications. After using principal stratification to define causal effects of interest, researchers are increasingly turning to finite mixture models to estimate these quantities. Unfortunately, standard estimators of mixture parameters, like the MLE, are known…
Descriptors: Statistical Analysis, Maximum Likelihood Statistics, Models, Statistical Distributions
Carpenter, Bob; Gelman, Andrew; Hoffman, Matthew D.; Lee, Daniel; Goodrich, Ben; Betancourt, Michael; Brubaker, Marcus A.; Guo, Jiqiang; Li, Peter; Riddell, Allen – Grantee Submission, 2017
Stan is a probabilistic programming language for specifying statistical models. A Stan program imperatively defines a log probability function over parameters conditioned on specified data and constants. As of version 2.14.0, Stan provides full Bayesian inference for continuous-variable models through Markov chain Monte Carlo methods such as the…
Descriptors: Programming Languages, Probability, Bayesian Statistics, Monte Carlo Methods
Zhang, Zhiyong – Grantee Submission, 2016
Growth curve models are widely used in social and behavioral sciences. However, typical growth curve models often assume that the errors are normally distributed although non-normal data may be even more common than normal data. In order to avoid possible statistical inference problems in blindly assuming normality, a general Bayesian framework is…
Descriptors: Bayesian Statistics, Models, Statistical Distributions, Computation