NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 4 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Jacob Whitehill; Jennifer LoCasale-Crouch – Journal of Educational Data Mining, 2024
With the aim to provide teachers with more specific, frequent, and actionable feedback about their teaching, we explore how Large Language Models (LLMs) can be used to estimate "Instructional Support" domain scores of the CLassroom Assessment Scoring System (CLASS), a widely used observation protocol. We design a machine learning…
Descriptors: Artificial Intelligence, Teacher Evaluation, Models, Transcripts (Written Records)
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Geigle, Chase; Zhai, ChengXiang – Journal of Educational Data Mining, 2017
Massive open online courses (MOOCs) provide educators with an abundance of data describing how students interact with the platform, but this data is highly underutilized today. This is in part due to the lack of sophisticated tools to provide interpretable and actionable summaries of huge amounts of MOOC activity present in log data. To address…
Descriptors: Large Group Instruction, Online Courses, Educational Technology, Technology Uses in Education
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Nelson, Brian; Nugent, Rebecca; Rupp, Andre A. – Journal of Educational Data Mining, 2012
This special issue of "JEDM" was dedicated to bridging work done in the disciplines of "educational and psychological assessment" and "educational data mining" (EDM) via the assessment design and implementation framework of "evidence-centered design" (ECD). It consisted of a series of five papers: one…
Descriptors: Statistical Analysis, Value Added Models, Educational Assessment, Program Design
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Amershi, Saleema; Conati, Cristina – Journal of Educational Data Mining, 2009
In this paper, we present a data-based user modeling framework that uses both unsupervised and supervised classification to build student models for exploratory learning environments. We apply the framework to build student models for two different learning environments and using two different data sources (logged interface and eye-tracking data).…
Descriptors: Supervision, Classification, Models, Educational Environment