Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 1 |
Since 2016 (last 10 years) | 1 |
Since 2006 (last 20 years) | 4 |
Descriptor
Source
Journal of Educational and… | 8 |
Author
Wainer, Howard | 2 |
Bauer, Daniel J. | 1 |
Bentler, Peter M. | 1 |
Browne, Michael W. | 1 |
Hunter, Michael | 1 |
Segawa, Eisuke | 1 |
Takane, Yoshio | 1 |
Waller, Niels G. | 1 |
Xi, Nuo | 1 |
Yung, Yiu-Fai | 1 |
Publication Type
Journal Articles | 8 |
Reports - Descriptive | 8 |
Education Level
High Schools | 1 |
Audience
Researchers | 1 |
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Waller, Niels G. – Journal of Educational and Behavioral Statistics, 2023
Although many textbooks on multivariate statistics discuss the common factor analysis model, few of these books mention the problem of factor score indeterminacy (FSI). Thus, many students and contemporary researchers are unaware of an important fact. Namely, for any common factor model with known (or estimated) model parameters, infinite sets of…
Descriptors: Statistics Education, Multivariate Analysis, Factor Analysis, Factor Structure
Xi, Nuo; Browne, Michael W. – Journal of Educational and Behavioral Statistics, 2014
A promising "underlying bivariate normal" approach was proposed by Jöreskog and Moustaki for use in the factor analysis of ordinal data. This was a limited information approach that involved the maximization of a composite likelihood function. Its advantage over full-information maximum likelihood was that very much less computation was…
Descriptors: Factor Analysis, Maximum Likelihood Statistics, Data, Computation
Wainer, Howard – Journal of Educational and Behavioral Statistics, 2011
This article presents an interview with Karl Gustav Joreskog. Karl Gustav Joreskog was born in Amal, Sweden, on April 25, 1935. He did his undergraduate studies at Uppsala University from 1955 to 1957, with a major in mathematics and physics. He received a PhD in statistics at Uppsala University in 1963, and he was a research statistician at…
Descriptors: Statistics, Structural Equation Models, Computer Software, Factor Analysis
Wainer, Howard – Journal of Educational and Behavioral Statistics, 2010
In this essay, the author tries to look forward into the 21st century to divine three things: (i) What skills will researchers in the future need to solve the most pressing problems? (ii) What are some of the most likely candidates to be those problems? and (iii) What are some current areas of research that seem mined out and should not distract…
Descriptors: Research Skills, Researchers, Internet, Access to Information

Hunter, Michael; Takane, Yoshio – Journal of Educational and Behavioral Statistics, 2002
Provides example applications of constrained principal component analysis (CPCA) that illustrate the method on a variety of contexts common to psychological research. Two new analyses, decompositions into finer components and fitting higher order structures, are presented, followed by an illustration of CPCA on contingency tables and the CPCA of…
Descriptors: Factor Analysis, Psychological Studies, Reliability, Research Methodology

Yung, Yiu-Fai; Bentler, Peter M. – Journal of Educational and Behavioral Statistics, 1999
Using explicit formulas for the information matrix of maximum likelihood factor analysis under multivariate normal theory, gross and net information for estimating the parameters in a covariance structure gained by adding the associated mean structure are defined. (Author/SLD)
Descriptors: Estimation (Mathematics), Factor Analysis, Maximum Likelihood Statistics
Segawa, Eisuke – Journal of Educational and Behavioral Statistics, 2005
Multi-indicator growth models were formulated as special three-level hierarchical generalized linear models to analyze growth of a trait latent variable measured by ordinal items. Items are nested within a time-point, and time-points are nested within subject. These models are special because they include factor analytic structure. This model can…
Descriptors: Bayesian Statistics, Mathematical Models, Factor Analysis, Computer Simulation
Bauer, Daniel J. – Journal of Educational and Behavioral Statistics, 2003
Multilevel linear models (MLMs) provide a powerful framework for analyzing data collected at nested or non-nested levels, such as students within classrooms. The current article draws on recent analytical and software advances to demonstrate that a broad class of MLMs may be estimated as structural equation models (SEMs). Moreover, within the SEM…
Descriptors: Structural Equation Models, Data Analysis, Computer Software, Evaluation Methods