Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 2 |
Since 2016 (last 10 years) | 7 |
Since 2006 (last 20 years) | 11 |
Descriptor
Data Analysis | 9 |
Models | 9 |
Data | 3 |
Evaluation Methods | 3 |
Learning | 3 |
Coding | 2 |
Correlation | 2 |
Data Collection | 2 |
Data Interpretation | 2 |
Educational Research | 2 |
Geometric Concepts | 2 |
More ▼ |
Source
Journal of Learning Analytics | 11 |
Author
Publication Type
Journal Articles | 11 |
Reports - Descriptive | 11 |
Guides - Non-Classroom | 1 |
Opinion Papers | 1 |
Education Level
Higher Education | 3 |
Postsecondary Education | 3 |
Audience
Location
Finland (Helsinki) | 1 |
Florida | 1 |
Michigan | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
McEneaney, John; Morsink, Paul – Journal of Learning Analytics, 2022
Learning analytics (LA) provides tools to analyze historical data with the goal of better understanding how curricular structures and features have impacted student learning. Forward-looking curriculum design, however, frequently involves a degree of uncertainty. Historical data may be unavailable, a contemplated modification to curriculum may be…
Descriptors: Curriculum Design, Learning Analytics, Educational Change, Computer Software
Weidlich, Joshua; Gaševic, Dragan; Drachsler, Hendrik – Journal of Learning Analytics, 2022
As a research field geared toward understanding and improving learning, Learning Analytics (LA) must be able to provide empirical support for causal claims. However, as a highly applied field, tightly controlled randomized experiments are not always feasible nor desirable. Instead, researchers often rely on observational data, based on which they…
Descriptors: Causal Models, Inferences, Learning Analytics, Comparative Analysis
Muslim, Arham; Chatti, Mohamed Amine; Bashir, Muhammad Bassim; Barrios Varela, Oscar Eduardo; Schroeder, Ulrik – Journal of Learning Analytics, 2018
Open Learning Analytics (OLA) is an emerging concept in the field of Learning Analytics (LA). It deals with learning data collected from multiple environments and contexts, analyzed with a wide range of analytics methods to address the requirements of different stakeholders. Due to this diversity in different dimensions of OLA, the LA developers…
Descriptors: Data Analysis, Learning, Models, Design
Kelly, Anthony E. – Journal of Learning Analytics, 2017
In this short thought-piece, I attempt to capture the type of freewheeling discussions I had with our late colleague, Mika Seppälä, a research mathematician from Helsinki. Mika, not being a psychometrician or learning scientist, was blissfully free from the design constraints that experts sometimes ingest, unwittingly. I also draw on delightful…
Descriptors: Data, Learning, Data Analysis, Numbers
Buser, Peter; Semmler, Klaus-Dieter – Journal of Learning Analytics, 2017
These pages aim to explain and interpret why the late Mika Seppälä, a conformal geometer, proposed to model student study behaviour using concepts from conformal geometry, such as Riemann surfaces and Strebel differentials. Over many years Mika Seppälä taught online calculus courses to students at Florida State University in the United States, as…
Descriptors: Geometry, Student Behavior, Mathematical Models, Graphs
Pardo, Abelardo; Bartimote-Aufflick, Kathryn; Shum, Simon Buckingham; Dawson, Shane; Gao, Jing; Gaševic, Dragan; Leichtweis, Steve; Liu, Danny; Martínez-Maldonado, Roberto; Mirriahi, Negin; Moskal, Adon Christian Michael; Schulte, Jurgen; Siemens, George; Vigentini, Lorenzo – Journal of Learning Analytics, 2018
The learning analytics community has matured significantly over the past few years as a middle space where technology and pedagogy combine to support learning experiences. To continue to grow and connect these perspectives, research needs to move beyond the level of basic support actions. This means exploring the use of data to prove richer forms…
Descriptors: Individualized Instruction, Data Analysis, Learning, Feedback (Response)
Shaffer, David Williamson; Collier, Wesley; Ruis, A. R. – Journal of Learning Analytics, 2016
This paper provides a tutorial on epistemic network analysis (ENA), a novel method for identifying and quantifying connections among elements in coded data and representing them in dynamic network models. Such models illustrate the structure of connections and measure the strength of association among elements in a network, and they quantify…
Descriptors: Epistemology, Network Analysis, Data Analysis, Coding
Wise, Alyssa Friend; Shaffer, David Williamson – Journal of Learning Analytics, 2015
It is an exhilarating and important time for conducting research on learning, with unprecedented quantities of data available. There is a danger, however, in thinking that with enough data, the numbers speak for themselves. In fact, with larger amounts of data, theory plays an ever-more critical role in analysis. In this introduction to the…
Descriptors: Learning Theories, Predictor Variables, Data, Data Analysis
Elouazizi, Noureddine – Journal of Learning Analytics, 2014
This paper identifies some of the main challenges of data governance modelling in the context of learning analytics for higher education institutions, and discusses the critical factors for designing data governance models for learning analytics. It identifies three fundamental common challenges that cut across any learning analytics data…
Descriptors: Data, Governance, Data Analysis, Influences
Reich, Justin; Tingley, Dustin; Leder-Luis, Jetson; Roberts, Margaret E.; Stewart, Brandon M. – Journal of Learning Analytics, 2015
Dealing with the vast quantities of text that students generate in Massive Open Online Courses (MOOCs) and other large-scale online learning environments is a daunting challenge. Computational tools are needed to help instructional teams uncover themes and patterns as students write in forums, assignments, and surveys. This paper introduces to the…
Descriptors: Large Group Instruction, Online Courses, Data Collection, Data Analysis
Teplovs, Chris – Journal of Learning Analytics, 2015
This commentary reflects on the contributions to learning analytics and theory by a paper that describes how multiple theoretical frameworks were woven together to inform the creation of a new, automated discourse analysis tool. The commentary highlights the contributions of the original paper, provides some alternative approaches, and touches on…
Descriptors: Data Analysis, Data Collection, Theory Practice Relationship, Instructional Design