NotesFAQContact Us
Collection
Advanced
Search Tips
Showing 1 to 15 of 20 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Sayegh, Fares; Herraiz, Laurie; Colom, Morgane; Lopez, Sébastien; Rampon, Claire; Dahan, Lionel – Learning & Memory, 2022
Dopamine participates in encoding memories and could either encode rewarding/aversive value of unconditioned stimuli or act as a novelty signal triggering contextual learning. Here we show that intraperitoneal injection of the dopamine D1/5R antagonist SCH23390 impairs contextual fear conditioning and tone-shock association, while intrahippocampal…
Descriptors: Cognitive Processes, Memory, Fear, Conditioning
Peer reviewed Peer reviewed
Direct linkDirect link
Nieto, Javier; Mason, Tere A.; Bernal-Gamboa, Rodolfo; Uengoer, Metin – Learning & Memory, 2020
In two instrumental conditioning experiments with rats, we examined the impacts of acquisition and extinction cues on ABC renewal of instrumental behavior. Animals were reinforced with food for lever pressing in one context, followed by extinction of the response in a second one. Presentations of a brief tone accompanied extinction in Experiment 1…
Descriptors: Cues, Conditioning, Animals, Animal Behavior
Peer reviewed Peer reviewed
Direct linkDirect link
Sekeres, Melanie J.; Moscovitch, Morris; Grady, Cheryl L.; Sullens, D. Gregory; Winocur, Gordon – Learning & Memory, 2020
Conditioned fear memories that are context-specific shortly after conditioning generalize over time. We exposed rats to a context reminder 30 d after conditioning, which served to reinstate context-specificity, and investigated how this reminder alters retrieval-induced activity in the hippocampus and anterior cingulate cortex (aCC) relative to a…
Descriptors: Memory, Animals, Brain Hemisphere Functions, Conditioning
Peer reviewed Peer reviewed
Direct linkDirect link
Krypotos, Angelos-Miltiadis; Moscarello, Justin M.; Sears, Robert M.; LeDoux, Joseph E.; Galatzer-Levy, Isaac – Learning & Memory, 2018
Signaled active avoidance (SigAA) is the key experimental procedure for studying the acquisition of instrumental responses toward conditioned threat cues. Traditional analytic approaches (e.g., general linear model) often obfuscate important individual differences, although individual differences in learned responses characterize both animal and…
Descriptors: Conditioning, Cues, Responses, Individual Differences
Peer reviewed Peer reviewed
Direct linkDirect link
Steinfurth, Elisa C. K.; Kanen, Jonathan W.; Raio, Candace M.; Clem, Roger L.; Huganir, Richard L.; Phelps, Elizabeth A. – Learning & Memory, 2014
Extinction training during reconsolidation has been shown to persistently diminish conditioned fear responses across species. We investigated in humans if older fear memories can benefit similarly. Using a Pavlovian fear conditioning paradigm we compared standard extinction and extinction after memory reactivation 1 d or 7 d following acquisition.…
Descriptors: Learning Processes, Fear, Memory, Conditioning
Peer reviewed Peer reviewed
Direct linkDirect link
Kehoe, E. James; Ludvig, Elliot A.; Sutton, Richard S. – Learning & Memory, 2014
The present experiment tested whether or not the time course of a conditioned eyeblink response, particularly its duration, would expand and contract, as the magnitude of the conditioned response (CR) changed massively during acquisition, extinction, and reacquisition. The CR duration remained largely constant throughout the experiment, while CR…
Descriptors: Conditioning, Eye Movements, Responses, Animals
Peer reviewed Peer reviewed
Direct linkDirect link
Gilmartin, Marieke R.; Kwapis, Janine L.; Helmstetter, Fred J. – Learning & Memory, 2013
Activation of "N"-methyl-D-aspartate receptors (NMDAR) in the prelimbic medial prefrontal cortex (PL mPFC) is necessary for the acquisition of both trace and contextual fear memories, but it is not known how specific NR2 subunits support each association. The NR2B subunit confers unique properties to the NMDAR and may differentially…
Descriptors: Brain, Fear, Conditioning, Biochemistry
Peer reviewed Peer reviewed
Direct linkDirect link
Singh, Teghpal; McDannald, Michael A.; Takahashi, Yuji K.; Haney, Richard Z.; Cooch, Nisha K.; Lucantonio, Federica; Schoenbaum, Geoffrey – Learning & Memory, 2011
While knowing what to expect is important, it is equally important to know when to expect it and to respond accordingly. This is apparent even in simple Pavlovian training situations in which animals learn to respond more strongly closer to reward delivery. Here we report that the nucleus accumbens core, an area well-positioned to represent…
Descriptors: Rewards, Classical Conditioning, Behavior Modification, Operant Conditioning
Peer reviewed Peer reviewed
Direct linkDirect link
Suter, Eugenie E.; Weiss, Craig; Disterhoft, John F. – Learning & Memory, 2013
The acquisition of temporal associative tasks such as trace eyeblink conditioning is hippocampus-dependent, while consolidated performance is not. The parahippocampal region mediates much of the input and output of the hippocampus, and perirhinal (PER) and entorhinal (EC) cortices support persistent spiking, a possible mediator of temporal…
Descriptors: Eye Movements, Conditioning, Brain, Neurological Impairments
Peer reviewed Peer reviewed
Direct linkDirect link
Perez, Margot; Rolland, Uther; Giurfa,, Martin; d'Ettorre, Patrizia – Learning & Memory, 2013
Social insects possess remarkable learning capabilities, which are crucial for their ecological success. They also exhibit interindividual differences in responsiveness to environmental stimuli, which underlie task specialization and division of labor. Here we investigated for the first time the relationships between sucrose responsiveness,…
Descriptors: Entomology, Responses, Olfactory Perception, Behavior
Peer reviewed Peer reviewed
Direct linkDirect link
Sakai, Takaomi; Sato, Shoma; Ishimoto, Hiroshi; Kitamoto, Toshihiro – Learning & Memory, 2013
Considerable evidence has demonstrated that transient receptor potential (TRP) channels play vital roles in sensory neurons, mediating responses to various environmental stimuli. In contrast, relatively little is known about how TRP channels exert their effects in the central nervous system to control complex behaviors. This is also true for the…
Descriptors: Neurological Organization, Brain, Pain, Stimuli
Peer reviewed Peer reviewed
Direct linkDirect link
Cole, Sindy; Powell, Daniel J.; Petrovich, Gorica D. – Learning & Memory, 2013
The amygdala is important for reward-associated learning, but how distinct cell groups within this heterogeneous structure are recruited during appetitive learning is unclear. Here we used Fos induction to map the functional amygdalar circuitry recruited during early and late training sessions of Pavlovian appetitive conditioning. We found that a…
Descriptors: Associative Learning, Brain, Neurological Organization, Conditioning
Peer reviewed Peer reviewed
Direct linkDirect link
Chung, Ain; Barot, Sabiha K.; Kim, Jeansok J.; Bernstein, Ilene L. – Learning & Memory, 2011
Modern views on learning and memory accept the notion of biological constraints--that the formation of association is not uniform across all stimuli. Yet cellular evidence of the encoding of selective associations is lacking. Here, conditioned stimuli (CSs) and unconditioned stimuli (USs) commonly employed in two basic associative learning…
Descriptors: Associative Learning, Stimuli, Conditioning, Biochemistry
Peer reviewed Peer reviewed
Direct linkDirect link
Mota, Theo; Giurfa, Martin; Sandoz, Jean-Christophe – Learning & Memory, 2011
A sophisticated form of nonelemental learning is provided by occasion setting. In this paradigm, animals learn to disambiguate an uncertain conditioned stimulus using alternative stimuli that do not enter into direct association with the unconditioned stimulus. For instance, animals may learn to discriminate odor rewarded from odor nonrewarded…
Descriptors: Animals, Stimuli, Entomology, Color
Peer reviewed Peer reviewed
Direct linkDirect link
Tabone, Christopher J.; de Belle, J. Steven – Learning & Memory, 2011
Associative conditioning in "Drosophila melanogaster" has been well documented for several decades. However, most studies report only simple associations of conditioned stimuli (CS, e.g., odor) with unconditioned stimuli (US, e.g., electric shock) to measure learning or establish memory. Here we describe a straightforward second-order conditioning…
Descriptors: Stimuli, Conditioning, Associative Learning, Memory
Previous Page | Next Page »
Pages: 1  |  2