NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 7 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Caspar J. Van Lissa; Eli-Boaz Clapper; Rebecca Kuiper – Research Synthesis Methods, 2024
The product Bayes factor (PBF) synthesizes evidence for an informative hypothesis across heterogeneous replication studies. It can be used when fixed- or random effects meta-analysis fall short. For example, when effect sizes are incomparable and cannot be pooled, or when studies diverge significantly in the populations, study designs, and…
Descriptors: Hypothesis Testing, Evaluation Methods, Replication (Evaluation), Sample Size
Peer reviewed Peer reviewed
Direct linkDirect link
Siegel, Lianne; Chu, Haitao – Research Synthesis Methods, 2023
Reference intervals, or reference ranges, aid medical decision-making by containing a pre-specified proportion (e.g., 95%) of the measurements in a representative healthy population. We recently proposed three approaches for estimating a reference interval from a meta-analysis based on a random effects model: a frequentist approach, a Bayesian…
Descriptors: Bayesian Statistics, Meta Analysis, Intervals, Decision Making
Peer reviewed Peer reviewed
Direct linkDirect link
Du, Han; Bradbury, Thomas N.; Lavner, Justin A.; Meltzer, Andrea L.; McNulty, James K.; Neff, Lisa A.; Karney, Benjamin R. – Research Synthesis Methods, 2020
Researchers often seek to synthesize results of multiple studies on the same topic to draw statistical or substantive conclusions and to estimate effect sizes that will inform power analyses for future research. The most popular synthesis approach is meta-analysis. There have been few discussions and applications of other synthesis approaches.…
Descriptors: Bayesian Statistics, Meta Analysis, Statistical Inference, Synthesis
Peer reviewed Peer reviewed
Direct linkDirect link
Efthimiou, Orestis; White, Ian R. – Research Synthesis Methods, 2020
Standard models for network meta-analysis simultaneously estimate multiple relative treatment effects. In practice, after estimation, these multiple estimates usually pass through a formal or informal selection procedure, eg, when researchers draw conclusions about the effects of the best performing treatment in the network. In this paper, we…
Descriptors: Models, Meta Analysis, Network Analysis, Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Lin, Lifeng; Chu, Haitao – Research Synthesis Methods, 2018
In medical sciences, a disease condition is typically associated with multiple risk and protective factors. Although many studies report results of multiple factors, nearly all meta-analyses separately synthesize the association between each factor and the disease condition of interest. The collected studies usually report different subsets of…
Descriptors: Bayesian Statistics, Multivariate Analysis, Meta Analysis, Correlation
Peer reviewed Peer reviewed
Direct linkDirect link
Uhlmann, Lorenz; Jensen, Katrin; Kieser, Meinhard – Research Synthesis Methods, 2017
Network meta-analysis is becoming a common approach to combine direct and indirect comparisons of several treatment arms. In recent research, there have been various developments and extensions of the standard methodology. Simultaneously, cluster randomized trials are experiencing an increased popularity, especially in the field of health services…
Descriptors: Bayesian Statistics, Network Analysis, Meta Analysis, Randomized Controlled Trials
Peer reviewed Peer reviewed
Direct linkDirect link
Stewart, G. B.; Mengersen, K.; Meader, N. – Research Synthesis Methods, 2014
Bayesian networks (BNs) are tools for representing expert knowledge or evidence. They are especially useful for synthesising evidence or belief concerning a complex intervention, assessing the sensitivity of outcomes to different situations or contextual frameworks and framing decision problems that involve alternative types of intervention.…
Descriptors: Bayesian Statistics, Networks, Cognitive Mapping, Data Collection