NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 9 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Jean-Paul Fox – Journal of Educational and Behavioral Statistics, 2025
Popular item response theory (IRT) models are considered complex, mainly due to the inclusion of a random factor variable (latent variable). The random factor variable represents the incidental parameter problem since the number of parameters increases when including data of new persons. Therefore, IRT models require a specific estimation method…
Descriptors: Sample Size, Item Response Theory, Accuracy, Bayesian Statistics
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Kim, Yunsung; Sreechan; Piech, Chris; Thille, Candace – International Educational Data Mining Society, 2023
Dynamic Item Response Models extend the standard Item Response Theory (IRT) to capture temporal dynamics in learner ability. While these models have the potential to allow instructional systems to actively monitor the evolution of learner proficiency in real time, existing dynamic item response models rely on expensive inference algorithms that…
Descriptors: Item Response Theory, Accuracy, Inferences, Algorithms
Peer reviewed Peer reviewed
Direct linkDirect link
Han, Insook; Obeid, Iyad; Greco, Devon – Technology, Knowledge and Learning, 2023
This report describes the use of electroencephalography (EEG) to collect online learners' physiological information. Recent technological advancements allow the unobtrusive collection of live neurosignals while learners are engaged in online activities. In the context of multimodal learning analytics, we discuss the potential use of this new…
Descriptors: Learning Analytics, Diagnostic Tests, Metacognition, Brain Hemisphere Functions
Peer reviewed Peer reviewed
Direct linkDirect link
Eegdeman, Irene; Cornelisz, Ilja; Meeter, Martijn; van Klaveren, Chris – Education Economics, 2023
Inefficient targeting of students at risk of dropping out might explain why dropout-reducing efforts often have no or mixed effects. In this study, we present a new method which uses a series of machine learning algorithms to efficiently identify students at risk and makes the sensitivity/precision trade-off inherent in targeting students for…
Descriptors: Foreign Countries, Vocational Schools, Dropout Characteristics, Dropout Prevention
Peer reviewed Peer reviewed
Direct linkDirect link
Hua Ma; Wen Zhao; Yuqi Tang; Peiji Huang; Haibin Zhu; Wensheng Tang; Keqin Li – IEEE Transactions on Learning Technologies, 2024
To prevent students from learning risks and improve teachers' teaching quality, it is of great significance to provide accurate early warning of learning performance to students by analyzing their interactions through an e-learning system. In existing research, the correlations between learning risks and students' changing cognitive abilities or…
Descriptors: College Students, Learning Analytics, Learning Management Systems, Academic Achievement
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Jamal Eddine Rafiq; Abdelali Zakrani; Mohammed Amraouy; Said Nouh; Abdellah Bennane – Turkish Online Journal of Distance Education, 2025
The emergence of online learning has sparked increased interest in predicting learners' academic performance to enhance teaching effectiveness and personalized learning. In this context, we propose a complex model APPMLT-CBT which aims to predict learners' performance in online learning settings. This systemic model integrates cognitive, social,…
Descriptors: Models, Online Courses, Educational Improvement, Learning Processes
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Flórez C., Oscar D.; Camargo L., Julián R.; Hurtado, Orlando García – Journal of Language and Linguistic Studies, 2022
This paper presents an application of the Kalman filter in signal processing in instrumentation systems when the conditions of the environment generate a large amount of interference for the acquisition of signals from measurement systems. The unwanted interferences make important use of the instrumentation system resources and do not represent…
Descriptors: Measurement, Accuracy, Simulation, Computer Software
Peer reviewed Peer reviewed
Direct linkDirect link
Christopher E. Gomez; Marcelo O. Sztainberg; Rachel E. Trana – International Journal of Bullying Prevention, 2022
Cyberbullying is the use of digital communication tools and spaces to inflict physical, mental, or emotional distress. This serious form of aggression is frequently targeted at, but not limited to, vulnerable populations. A common problem when creating machine learning models to identify cyberbullying is the availability of accurately annotated,…
Descriptors: Video Technology, Computer Software, Computer Mediated Communication, Bullying
Peer reviewed Peer reviewed
Direct linkDirect link
Erin C. Yang; Robby Divine; Christine S. Kang; Sidney Chan; Elijah Arenas; Zoe Subol; Peter Tinker; Hayden Manninen; Alicia Feichtenbiner; Talal Mustafa; Julia Hallowell; Isiac Orr; Hugh Haddox; Brian Koepnick; Jacob O'Connor; Ian C. Haydon; Karla-Luise Herpoldt; Kandise Van Wormer; Celine Abell; David Baker; Alena Khmelinskaia; Neil P. King – Journal of Chemical Education, 2022
Undergraduate research experiences can improve student success in graduate education and STEM careers. During the COVID-19 pandemic, undergraduate researchers at our institution and many others lost their work-study research positions due to interruption of in-person research activities. This imposed a financial burden on the students and…
Descriptors: Undergraduate Students, Teaching Methods, COVID-19, Pandemics