Publication Date
In 2025 | 1 |
Since 2024 | 1 |
Since 2021 (last 5 years) | 2 |
Since 2016 (last 10 years) | 3 |
Since 2006 (last 20 years) | 3 |
Descriptor
Algorithms | 4 |
Bayesian Statistics | 4 |
Evaluation Methods | 2 |
Generalization | 2 |
Models | 2 |
Simulation | 2 |
Accuracy | 1 |
Computation | 1 |
Correlation | 1 |
Estimation (Mathematics) | 1 |
Item Response Theory | 1 |
More ▼ |
Author
Arminger, Gerhard | 1 |
Blomstedt, Paul | 1 |
Cunningham, John P. | 1 |
Edgar C. Merkle | 1 |
Gelman, Andrew | 1 |
Jean-Paul Fox | 1 |
Jylänki, Pasi | 1 |
Mauricio Garnier-Villarreal | 1 |
Muthen, Bengt O. | 1 |
Oludare Ariyo | 1 |
Robert, Christian P. | 1 |
More ▼ |
Publication Type
Journal Articles | 4 |
Reports - Descriptive | 4 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Jean-Paul Fox – Journal of Educational and Behavioral Statistics, 2025
Popular item response theory (IRT) models are considered complex, mainly due to the inclusion of a random factor variable (latent variable). The random factor variable represents the incidental parameter problem since the number of parameters increases when including data of new persons. Therefore, IRT models require a specific estimation method…
Descriptors: Sample Size, Item Response Theory, Accuracy, Bayesian Statistics
Edgar C. Merkle; Oludare Ariyo; Sonja D. Winter; Mauricio Garnier-Villarreal – Grantee Submission, 2023
We review common situations in Bayesian latent variable models where the prior distribution that a researcher specifies differs from the prior distribution used during estimation. These situations can arise from the positive definite requirement on correlation matrices, from sign indeterminacy of factor loadings, and from order constraints on…
Descriptors: Models, Bayesian Statistics, Correlation, Evaluation Methods
Vehtari, Aki; Gelman, Andrew; Sivula, Tuomas; Jylänki, Pasi; Tran, Dustin; Sahai, Swupnil; Blomstedt, Paul; Cunningham, John P.; Schiminovich, David; Robert, Christian P. – Grantee Submission, 2020
A common divide-and-conquer approach for Bayesian computation with big data is to partition the data, perform local inference for each piece separately, and combine the results to obtain a global posterior approximation. While being conceptually and computationally appealing, this method involves the problematic need to also split the prior for…
Descriptors: Bayesian Statistics, Algorithms, Computation, Generalization

Arminger, Gerhard; Muthen, Bengt O. – Psychometrika, 1998
Nonlinear latent variable models are specified that include quadratic forms and interactions of latent regressor variable as special cases. To estimate the parameters, the models are put in a Bayesian framework with conjugate priors for the parameters. The proposed estimation methods are illustrated by two simulation studies. (SLD)
Descriptors: Algorithms, Bayesian Statistics, Estimation (Mathematics), Mathematical Models