Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 2 |
Since 2016 (last 10 years) | 6 |
Since 2006 (last 20 years) | 18 |
Descriptor
Computation | 19 |
Multivariate Analysis | 19 |
Factor Analysis | 5 |
Models | 5 |
Statistical Analysis | 5 |
Item Response Theory | 4 |
Mathematics | 4 |
Evaluation Methods | 3 |
Foreign Countries | 3 |
Bayesian Statistics | 2 |
Classification | 2 |
More ▼ |
Source
Author
Publication Type
Reports - Descriptive | 19 |
Journal Articles | 18 |
Guides - Non-Classroom | 1 |
Education Level
Higher Education | 2 |
Postsecondary Education | 1 |
Secondary Education | 1 |
Two Year Colleges | 1 |
Audience
Practitioners | 1 |
Researchers | 1 |
Laws, Policies, & Programs
Assessments and Surveys
Wechsler Adult Intelligence… | 1 |
What Works Clearinghouse Rating
Huang, Francis L. – Journal of Educational and Behavioral Statistics, 2022
The presence of clustered data is common in the sociobehavioral sciences. One approach that specifically deals with clustered data but has seen little use in education is the generalized estimating equations (GEEs) approach. We provide a background on GEEs, discuss why it is appropriate for the analysis of clustered data, and provide worked…
Descriptors: Multivariate Analysis, Computation, Correlation, Error of Measurement
Waller, Niels G. – Journal of Educational and Behavioral Statistics, 2023
Although many textbooks on multivariate statistics discuss the common factor analysis model, few of these books mention the problem of factor score indeterminacy (FSI). Thus, many students and contemporary researchers are unaware of an important fact. Namely, for any common factor model with known (or estimated) model parameters, infinite sets of…
Descriptors: Statistics Education, Multivariate Analysis, Factor Analysis, Factor Structure
Guasch, Marc; Haro, Juan; Boada, Roger – Psicologica: International Journal of Methodology and Experimental Psychology, 2017
With the increasing refinement of language processing models and the new discoveries about which variables can modulate these processes, stimuli selection for experiments with a factorial design is becoming a tough task. Selecting sets of words that differ in one variable, while matching these same words into dozens of other confounding variables…
Descriptors: Factor Analysis, Language Processing, Design, Cluster Grouping
Tutz, Gerhard; Berger, Moritz – Journal of Educational and Behavioral Statistics, 2016
Heterogeneity in response styles can affect the conclusions drawn from rating scale data. In particular, biased estimates can be expected if one ignores a tendency to middle categories or to extreme categories. An adjacent categories model is proposed that simultaneously models the content-related effects and the heterogeneity in response styles.…
Descriptors: Response Style (Tests), Rating Scales, Data Interpretation, Statistical Bias
Lee, Katherine J.; Roberts, Gehan; Doyle, Lex W.; Anderson, Peter J.; Carlin, John B. – International Journal of Social Research Methodology, 2016
Multiple imputation (MI), a two-stage process whereby missing data are imputed multiple times and the resulting estimates of the parameter(s) of interest are combined across the completed datasets, is becoming increasingly popular for handling missing data. However, MI can result in biased inference if not carried out appropriately or if the…
Descriptors: Data Analysis, Statistical Inference, Computation, Research Problems
Chiu, Chia-Yi; Köhn, Hans-Friedrich; Wu, Huey-Min – International Journal of Testing, 2016
The Reduced Reparameterized Unified Model (Reduced RUM) is a diagnostic classification model for educational assessment that has received considerable attention among psychometricians. However, the computational options for researchers and practitioners who wish to use the Reduced RUM in their work, but do not feel comfortable writing their own…
Descriptors: Educational Diagnosis, Classification, Models, Educational Assessment
Brandmaier, Andreas M.; von Oertzen, Timo; McArdle, John J.; Lindenberger, Ulman – Psychological Methods, 2013
In the behavioral and social sciences, structural equation models (SEMs) have become widely accepted as a modeling tool for the relation between latent and observed variables. SEMs can be seen as a unification of several multivariate analysis techniques. SEM Trees combine the strengths of SEMs and the decision tree paradigm by building tree…
Descriptors: Structural Equation Models, Multivariate Analysis, Computation, Factor Analysis
Moraveji, Behjat; Jafarian, Koorosh – International Journal of Education and Literacy Studies, 2014
The aim of this paper is to provide an introduction of new imputation algorithms for estimating missing values from official statistics in larger data sets of data pre-processing, or outliers. The goal is to propose a new algorithm called IRMI (iterative robust model-based imputation). This algorithm is able to deal with all challenges like…
Descriptors: Mathematics, Computation, Robustness (Statistics), Regression (Statistics)
Steinley, Douglas; Brusco, Michael J. – Psychological Methods, 2011
Steinley (2007) provided a lower bound for the sum-of-squares error criterion function used in K-means clustering. In this article, on the basis of the lower bound, the authors propose a method to distinguish between 1 cluster (i.e., a single distribution) versus more than 1 cluster. Additionally, conditional on indicating there are multiple…
Descriptors: Multivariate Analysis, Computation, Validity
Cheung, Mike
W.-L. – Structural Equation Modeling: A Multidisciplinary Journal, 2013
Structural equation modeling (SEM) is now a generic modeling framework for many multivariate techniques applied in the social and behavioral sciences. Many statistical models can be considered either as special cases of SEM or as part of the latent variable modeling framework. One popular extension is the use of SEM to conduct linear mixed-effects…
Descriptors: Structural Equation Models, Maximum Likelihood Statistics, Guidelines, Multivariate Analysis
Drummond, Gordon B.; Vowler, Sarah L. – Advances in Physiology Education, 2012
These authors have previously described how to use the "t" test to compare two groups. In this article, they describe the use of a different test, analysis of variance (ANOVA) to compare more than two groups. ANOVA is a test of group differences: do at least two of the means differ from each other? ANOVA assumes (1) normal distribution…
Descriptors: Test Results, Statistical Analysis, Multivariate Analysis, Evaluation Methods
Avetisyan, Marianna; Fox, Jean-Paul – Psicologica: International Journal of Methodology and Experimental Psychology, 2012
In survey sampling the randomized response (RR) technique can be used to obtain truthful answers to sensitive questions. Although the individual answers are masked due to the RR technique, individual (sensitive) response rates can be estimated when observing multivariate response data. The beta-binomial model for binary RR data will be generalized…
Descriptors: Computation, Sample Size, Responses, Multivariate Analysis
Raykov, Tenko; Marcoulides, George A. – Journal of Educational and Behavioral Statistics, 2010
A latent variable modeling method is outlined for constructing a confidence interval (CI) of a popular multivariate effect size measure. The procedure uses the conventional multivariate analysis of variance (MANOVA) setup and is applicable with large samples. The approach provides a population range of plausible values for the proportion of…
Descriptors: Multivariate Analysis, Effect Size, Computation, Statistical Analysis
Browne, William; Goldstein, Harvey – Journal of Educational and Behavioral Statistics, 2010
In this article, we discuss the effect of removing the independence assumptions between the residuals in two-level random effect models. We first consider removing the independence between the Level 2 residuals and instead assume that the vector of all residuals at the cluster level follows a general multivariate normal distribution. We…
Descriptors: Computation, Sampling, Markov Processes, Monte Carlo Methods
Biemer, Paul P.; Christ, Sharon L.; Wiesen, Christopher A. – Psychological Methods, 2009
Scale score measures are ubiquitous in the psychological literature and can be used as both dependent and independent variables in data analysis. Poor reliability of scale score measures leads to inflated standard errors and/or biased estimates, particularly in multivariate analysis. Reliability estimation is usually an integral step to assess…
Descriptors: Psychological Studies, Social Science Research, Reliability, Computation
Previous Page | Next Page »
Pages: 1 | 2