NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing 1 to 15 of 88 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Shakur, Asif; Binz, Steven – Physics Teacher, 2021
The use of smartphones in experimental physics is by now widely accepted and documented. PASCO scientific's Smart Cart, in combination with student-owned smartphones and free apps, has opened a new universe of low-cost experiments that have traditionally required cumbersome and expensive equipment. In this paper, we demonstrate the simplicity,…
Descriptors: Handheld Devices, Science Experiments, Physics, Computer Oriented Programs
Peer reviewed Peer reviewed
Direct linkDirect link
Priya Yadav; Harshita Laddha; Madhu Agarwal; Ragini Gupta – Journal of Chemical Education, 2022
A smartphone-based digital imaging method has been successfully introduced in an undergraduate laboratory class to quantify fluoride ions in water. Students first synthesized the chemosensor (E)-2-(1-(6-nitro-2-oxo-2H-chromen-3-yl)ethylidene)-N-phenylhydrazine-1-carbothioamide (CT) via an eco-friendly and green microwave-assisted protocol and…
Descriptors: Handheld Devices, Telecommunications, Educational Technology, College Science
Peer reviewed Peer reviewed
Direct linkDirect link
Shakur, Asif; Valliant, Benjamin – Physics Teacher, 2020
The use of smartphones in experimental physics is by now widely accepted and documented. PASCO scientific's smart cart, in combination with student-owned smartphones and free apps, has opened up a new universe of low-cost experiments that have traditionally required cumbersome and expensive equipment. In this paper we demonstrate the simplicity,…
Descriptors: Science Instruction, Physics, Telecommunications, Handheld Devices
Peer reviewed Peer reviewed
Direct linkDirect link
Hawley, Scott H.; McClain, Robert E., Jr. – Physics Teacher, 2018
When Yang-Hann Kim received the Rossing Prize in Acoustics Education at the 2015 meeting of the Acoustical Society of America, he stressed the importance of offering visual depictions of sound fields when teaching acoustics. Often visualization methods require specialized equipment such as microphone arrays or scanning apparatus. We present a…
Descriptors: Physics, Acoustics, Visualization, Telecommunications
Peer reviewed Peer reviewed
Direct linkDirect link
Wisman, Raymond F.; Spahn, Gabriel; Forinash, Kyle – Physics Education, 2018
Data collection is a fundamental skill in science education, one that students generally practice in a controlled setting using equipment only available in the classroom laboratory. However, using smartphones with their built-in sensors and often free apps, many fundamental experiments can be performed outside the laboratory. Taking advantage of…
Descriptors: Science Instruction, Science Process Skills, Data Collection, Telecommunications
Peer reviewed Peer reviewed
Direct linkDirect link
Vollmer, Michael; Möllmann, Klaus-Peter – Physics Education, 2018
Video analysis with a 30 Hz frame rate is the standard tool in physics education. The development of affordable high-speed-cameras has extended the capabilities of the tool for much smaller time scales to the 1 ms range, using frame rates of typically up to 1000 frames s[superscript -1], allowing us to study transient physics phenomena happening…
Descriptors: Physics, Science Education, Motion, Time
Peer reviewed Peer reviewed
Direct linkDirect link
Davies, Gary B. – Physics Education, 2017
Carrying out classroom experiments that demonstrate Boyle's law and Gay-Lussac's law can be challenging. Even if we are able to conduct classroom experiments using pressure gauges and syringes, the results of these experiments do little to illuminate the kinetic theory of gases. However, molecular dynamics simulations that run on computers allow…
Descriptors: Science Instruction, Science Experiments, Physics, Educational Technology
Peer reviewed Peer reviewed
Direct linkDirect link
Carvalho, Paulo Simeão; Hahn, Marcelo – Physics Teacher, 2016
The result of additive colors is always fascinating to young students. When we teach this topic to 14- to 16-year-old students, they do not usually notice we use maximum light quantities of red (R), green (G), and blue (B) to obtain yellow, magenta, and cyan colors in order to build the well-known additive color diagram of Fig. 1. But how about…
Descriptors: Science Experiments, Teaching Methods, Hands on Science, Color
Peer reviewed Peer reviewed
Direct linkDirect link
Montangero, Marc – Journal of Chemical Education, 2015
When dissolving copper in nitric acid, copper(II) ions produce a blue-colored solution. It is possible to determine the concentration of copper(II) ions, focusing on the hue of the color, using a smartphone camera. A free app can be used to measure the hue of the solution, and with the help of standard copper(II) solutions, one can graph a…
Descriptors: Science Instruction, Secondary School Science, Telecommunications, Handheld Devices
Peer reviewed Peer reviewed
Millar, R. H.; Underwood, C. I. – School Science Review, 1984
Discusses an easy way of interfacing physics experiments to a microcomputer, providing information on the "analog input port" of a BBC microcomputer. Also describes a capacitor discharge experiment with suggestions for several student activities such as investigating decay curve shapes. Program listing is available from author. (DH)
Descriptors: Computer Oriented Programs, Microcomputers, Physics, Science Education
Peer reviewed Peer reviewed
Moore, John W. – Journal of Chemical Education, 1986
Describes: (1) spreadheet programs (including VisiCalc) for experiments; (2) event-driven data acquisition (using ADALAB with an Acculab Infrared Spectometer); (3) microcomputer-controlled cyclic voltammetry; (4) inexpensive computerized experiments; (5) the "KC? Discoverer" program; and (6) MOLDOT (space-filling perspective diagrams of…
Descriptors: Chemistry, Computer Oriented Programs, Computer Software, High Schools
Peer reviewed Peer reviewed
Moore, John W., Ed. – Journal of Chemical Education, 1985
Describes (1) interfacing the Commodore VIC-20 using joystick game ports; (2) a chromatographic integrator for the TRS-80; (3) upgrading input/output capabilities of the TRS-80 color microcomputer; (4) IBM PC interfaced to a Perkin-Elmer DSC-1 differential scanning calorimeter; and (5) an undergraduate experiment in which students design a…
Descriptors: Chemistry, College Science, Computer Oriented Programs, Computer Software
Peer reviewed Peer reviewed
Nicklin, R. C. – Journal of College Science Teaching, 1985
Microcomputers can record laboratory measurements which human laboratory partners can never collect. Simple, harder, and general-purpose interfaces are discussed, with suggestions for several experiments involving an exercise bike, acceleration, and pendulums. Additional applications with pH meters, spectrophotometers, and chromatographs are also…
Descriptors: College Science, Computer Oriented Programs, Higher Education, Laboratory Procedures
Peer reviewed Peer reviewed
Moore, John W., Ed. – Journal of Chemical Education, 1985
Describes: (1) a FORTH-language, computer-controlled potentiometric titration; (2) coulometric titrations using computer-interfaced potentiometric endpoint detection; (3) interfacing a scanning infrared spectrophotometer to a microcomputer; (4) demonstrations of signal-to-noise enhancement (digital filtering); (5) and an inexpensive Apple…
Descriptors: Computer Oriented Programs, Computer Software, High Schools, Higher Education
Peer reviewed Peer reviewed
Johnson, Ray L. – Journal of Chemical Education, 1982
A laboratory computer system based on the Commodore PET 2001 is described including three applications for the undergraduate analytical chemistry laboratory: (1) recording a UV-visible absorption spectrum; (2) recording and use of calibration curves; and (3) recording potentiometric data. Lists of data acquisition programs described are available…
Descriptors: Chemistry, College Science, Computer Oriented Programs, Data Collection
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5  |  6