NotesFAQContact Us
Collection
Advanced
Search Tips
Publication Type
Journal Articles32
Reports - Descriptive32
Location
Sweden1
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 32 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Steffen Nestler; Sarah Humberg – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Several variants of the autoregressive structural equation model were suggested over the past years, including, for example, the random intercept autoregressive panel model, the latent curve model with structured residuals, and the STARTS model. The present work shows how to place these models into a mixed-effects model framework and how to…
Descriptors: Structural Equation Models, Computer Software, Models, Measurement
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Orcan, Fatih – International Journal of Assessment Tools in Education, 2021
Monte Carlo simulation is a useful tool for researchers to estimated accuracy of a statistical model. It is usually used for investigating parameter estimation procedure or violation of assumption for some given conditions. To run a simulation either the paid software or open source but free program such as R is need to be used. For that,…
Descriptors: Monte Carlo Methods, Structural Equation Models, Accuracy, Computer Software
Merkle, Edgar C.; Fitzsimmons, Ellen; Uanhoro, James; Goodrich, Ben – Grantee Submission, 2021
Structural equation models comprise a large class of popular statistical models, including factor analysis models, certain mixed models, and extensions thereof. Model estimation is complicated by the fact that we typically have multiple interdependent response variables and multiple latent variables (which may also be called random effects or…
Descriptors: Bayesian Statistics, Structural Equation Models, Psychometrics, Factor Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Paek, Insu; Cui, Mengyao; Öztürk Gübes, Nese; Yang, Yanyun – Educational and Psychological Measurement, 2018
The purpose of this article is twofold. The first is to provide evaluative information on the recovery of model parameters and their standard errors for the two-parameter item response theory (IRT) model using different estimation methods by Mplus. The second is to provide easily accessible information for practitioners, instructors, and students…
Descriptors: Item Response Theory, Computation, Factor Analysis, Statistical Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Yuan, Ke-Hai; Zhang, Zhiyong – Structural Equation Modeling: A Multidisciplinary Journal, 2012
Yuan and Hayashi (2010) introduced 2 scatter plots for model and data diagnostics in structural equation modeling (SEM). However, the generation of the plots requires in-depth understanding of their underlying technical details. This article develops and introduces an R package semdiag for easily drawing the 2 plots. With a model specified in EQS…
Descriptors: Structural Equation Models, Statistical Analysis, Robustness (Statistics), Computer Software
Peer reviewed Peer reviewed
Direct linkDirect link
Peugh, James L.; DiLillo, David; Panuzio, Jillian – Structural Equation Modeling: A Multidisciplinary Journal, 2013
Mixed-dyadic data, collected from distinguishable (nonexchangeable) or indistinguishable (exchangeable) dyads, require statistical analysis techniques that model the variation within dyads and between dyads appropriately. The purpose of this article is to provide a tutorial for performing structural equation modeling analyses of cross-sectional…
Descriptors: Structural Equation Models, Data Analysis, Statistical Analysis, Computer Software
Peer reviewed Peer reviewed
Direct linkDirect link
Wainer, Howard – Journal of Educational and Behavioral Statistics, 2011
This article presents an interview with Karl Gustav Joreskog. Karl Gustav Joreskog was born in Amal, Sweden, on April 25, 1935. He did his undergraduate studies at Uppsala University from 1955 to 1957, with a major in mathematics and physics. He received a PhD in statistics at Uppsala University in 1963, and he was a research statistician at…
Descriptors: Statistics, Structural Equation Models, Computer Software, Factor Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Tueller, Stephen J.; Drotar, Scott; Lubke, Gitta H. – Structural Equation Modeling: A Multidisciplinary Journal, 2011
The discrimination between alternative models and the detection of latent classes in the context of latent variable mixture modeling depends on sample size, class separation, and other aspects that are related to power. Prior to a mixture analysis it is useful to investigate model performance in a simulation study that reflects the research…
Descriptors: Simulation, Structural Equation Models, Statistical Analysis, Mathematics
Peer reviewed Peer reviewed
Direct linkDirect link
Ghisletta, Paolo; McArdle, John J. – Structural Equation Modeling: A Multidisciplinary Journal, 2012
In recent years the use of the latent curve model (LCM) among researchers in social sciences has increased noticeably, probably thanks to contemporary software developments and the availability of specialized literature. Extensions of the LCM, like the the latent change score model (LCSM), have also increased in popularity. At the same time, the R…
Descriptors: Statistical Analysis, Structural Equation Models, Computation, Computer Software
Peer reviewed Peer reviewed
Direct linkDirect link
Boker, Steven; Neale, Michael; Maes, Hermine; Wilde, Michael; Spiegel, Michael; Brick, Timothy; Spies, Jeffrey; Estabrook, Ryne; Kenny, Sarah; Bates, Timothy; Mehta, Paras; Fox, John – Psychometrika, 2011
OpenMx is free, full-featured, open source, structural equation modeling (SEM) software. OpenMx runs within the "R" statistical programming environment on Windows, Mac OS-X, and Linux computers. The rationale for developing OpenMx is discussed along with the philosophy behind the user interface. The OpenMx data structures are…
Descriptors: Structural Equation Models, Open Source Technology, Computer Software, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Bryant, Fred B.; Satorra, Albert – Structural Equation Modeling: A Multidisciplinary Journal, 2012
We highlight critical conceptual and statistical issues and how to resolve them in conducting Satorra-Bentler (SB) scaled difference chi-square tests. Concerning the original (Satorra & Bentler, 2001) and new (Satorra & Bentler, 2010) scaled difference tests, a fundamental difference exists in how to compute properly a model's scaling correction…
Descriptors: Statistical Analysis, Structural Equation Models, Goodness of Fit, Least Squares Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Lee, Sik-Yum; Song, Xin-Yuan; Cai, Jing-Heng – Structural Equation Modeling: A Multidisciplinary Journal, 2010
Analysis of ordered binary and unordered binary data has received considerable attention in social and psychological research. This article introduces a Bayesian approach, which has several nice features in practical applications, for analyzing nonlinear structural equation models with dichotomous data. We demonstrate how to use the software…
Descriptors: Bayesian Statistics, Structural Equation Models, Computer Software, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Mair, Patrick; Wu, Eric; Bentler, Peter M. – Structural Equation Modeling: A Multidisciplinary Journal, 2010
The REQS package is an interface between the R environment of statistical computing and the EQS software for structural equation modeling. The package consists of 3 main functions that read EQS script files and import the results into R, call EQS script files from R, and run EQS script files from R and import the results after EQS computations.…
Descriptors: Structural Equation Models, Computer Software, Statistical Analysis, Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Gagne, Phill; Furlow, Carolyn F. – Structural Equation Modeling: A Multidisciplinary Journal, 2009
Simulation researchers are sometimes faced with the need to use multiple statistical software packages in the process of conducting their research, potentially having to go between software packages manually. This can be a tedious and time-consuming process that generally motivates researchers to use fewer replications in their simulations than…
Descriptors: Structural Equation Models, Computer Software, Researchers, Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Levy, Roy – Applied Psychological Measurement, 2010
SEMModComp, a software package for conducting likelihood ratio tests for mean and covariance structure modeling is described. The package is written in R and freely available for download or on request.
Descriptors: Structural Equation Models, Tests, Computer Software, Models
Previous Page | Next Page »
Pages: 1  |  2  |  3