Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 4 |
Since 2016 (last 10 years) | 8 |
Since 2006 (last 20 years) | 22 |
Descriptor
Source
Author
Brusco, Michael J. | 2 |
Steinley, Douglas | 2 |
Adams, Bryan | 1 |
Adelson, Jill L. | 1 |
Amanda M. Lines | 1 |
Anaya, Antonio R. | 1 |
Anderson, Peter J. | 1 |
Baller, Daniel | 1 |
Bauer, Daniel J. | 1 |
Biemer, Paul P. | 1 |
Boticario, Jesus G. | 1 |
More ▼ |
Publication Type
Reports - Descriptive | 30 |
Journal Articles | 25 |
Speeches/Meeting Papers | 4 |
Books | 1 |
Education Level
Higher Education | 9 |
Postsecondary Education | 6 |
Adult Education | 1 |
Two Year Colleges | 1 |
Audience
Researchers | 2 |
Location
Australia | 1 |
Florida | 1 |
Spain | 1 |
United Kingdom | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Muurlink, Olav; Gould, Anthony M.; Joullié, Jean-Etienne – Sociological Methods & Research, 2023
Development of graphical methods for representing data has not kept up with progress in statistical techniques. This article presents a brief history of graphical representations of research findings and makes the case for a revival of methods developed in the early and mid-twentieth century, notably ISOTYPE and Chernoff's faces. It resurrects and…
Descriptors: Visual Aids, Visualization, Data Analysis, Research Methodology
Durrant, Gabriele B.; Maslovskaya, Olga; Smith, Peter W.F. – International Journal of Social Research Methodology, 2019
Researchers have become increasingly interested in better understanding the survey data collection process in interviewer-administered surveys. However, tools for analysing paradata capturing information about field processes, also called call record data, are still not yet fully explored. This paper introduces sequence analysis as a simple tool…
Descriptors: Foreign Countries, Data Analysis, Interviews, Surveys
Hope E. Lackey; Rachel L. Sell; Gilbert L. Nelson; Thomas A. Bryan; Amanda M. Lines; Samuel A. Bryan – Journal of Chemical Education, 2023
The methodology and mathematical treatment of several classic multivariate methods for the analysis of spectroscopic data is demonstrated in a straightforward way that can be used as a basis for teaching an undergraduate introductory course on chemometric analysis. The multivariate techniques of classical least-squares (CLS), principal component…
Descriptors: Chemistry, Data Analysis, Optics, Lighting
Curley, Brenna; Peterson, Anna – Journal of Statistics and Data Science Education, 2022
In this article, we outline several activities revolving around soccer players who participated in the 2018 FIFA World Cup and 2019 FIFA Women's World Cup. Classroom activities are described from different perspectives, useful for a range of different statistics courses. In a first semester probability theory course, students investigate the…
Descriptors: Team Sports, Competition, Teaching Methods, Data Analysis
Adams, Bryan; Baller, Daniel; Jonas, Bryan; Joseph, Anny-Claude; Cummiskey, Kevin – Journal of Statistics and Data Science Education, 2021
Since the publishing of Nolan and Temple Lang's "Computing in the Statistics Curriculum" in 2010, the American Statistical Association issued new recommendations in the revised GAISE college report. To reflect modern practice and technologies, they emphasize giving students experience with multivariable thinking. Students develop…
Descriptors: Multivariate Analysis, Statistics Education, Teaching Methods, Thinking Skills
Vaske, Jerry J. – Sagamore-Venture, 2019
Data collected from surveys can result in hundreds of variables and thousands of respondents. This implies that time and energy must be devoted to (a) carefully entering the data into a database, (b) running preliminary analyses to identify any problems (e.g., missing data, potential outliers), (c) checking the reliability and validity of the…
Descriptors: Surveys, Theories, Hypothesis Testing, Effect Size
Chen, Zhongzhou; Lee, Sunbok; Garrido, Geoffrey – International Educational Data Mining Society, 2018
The amount of information contained in any educational data set is fundamentally constrained by the instructional conditions under which the data are collected. In this study, we show that by redesigning the structure of traditional online courses, we can improve the ability of educational data mining to provide useful information for instructors.…
Descriptors: Online Courses, Course Organization, Data Analysis, Instructional Design
Lee, Katherine J.; Roberts, Gehan; Doyle, Lex W.; Anderson, Peter J.; Carlin, John B. – International Journal of Social Research Methodology, 2016
Multiple imputation (MI), a two-stage process whereby missing data are imputed multiple times and the resulting estimates of the parameter(s) of interest are combined across the completed datasets, is becoming increasingly popular for handling missing data. However, MI can result in biased inference if not carried out appropriately or if the…
Descriptors: Data Analysis, Statistical Inference, Computation, Research Problems
Warne, Russell T.; Li, Yan; McKyer, E. Lisako J.; Condie, Rachel; Diep, Cassandra S.; Murano, Peter S. – Journal of Nutrition Education and Behavior, 2012
Researchers in nutrition research often use cluster or multistage sampling to gather participants for their studies. These sampling methods often produce violations of the assumption of data independence that most traditional statistics share. Hierarchical linear modeling is a statistical method that can overcome violations of the independence…
Descriptors: Nutrition, Statistical Analysis, Sampling, Research
Rupp, André A.; Nugent, Rebecca; Nelson, Brian – Journal of Educational Data Mining, 2012
In recent years the educational community has increasingly embraced digital technologies for the purposes of developing alternative learning environments, providing diagnostic feedback, and fostering the development of so-called 21st-century skills. This special issue is dedicated to bridging recent work from the disciplines of educational and…
Descriptors: Electronic Learning, Psychometrics, Educational Environment, Educational Technology
Powers, Daniel A. – New Directions for Institutional Research, 2012
The methods and models for categorical data analysis cover considerable ground, ranging from regression-type models for binary and binomial data, count data, to ordered and unordered polytomous variables, as well as regression models that mix qualitative and continuous data. This article focuses on methods for binary or binomial data, which are…
Descriptors: Institutional Research, Educational Research, Data Analysis, Research Methodology
Pezzolo, Alessandra De Lorenzi – Journal of Chemical Education, 2011
The diffuse reflectance infrared Fourier transform (DRIFT) spectra of sand samples exhibit features reflecting their composition. Basic multivariate analysis (MVA) can be used to effectively sort subsets of homogeneous specimens collected from nearby locations, as well as pointing out similarities in composition among sands of different origins.…
Descriptors: Graduate Students, Undergraduate Students, Spectroscopy, Multivariate Analysis
Kohn, Hans-Friedrich; Steinley, Douglas; Brusco, Michael J. – Psychological Methods, 2010
The "p"-median clustering model represents a combinatorial approach to partition data sets into disjoint, nonhierarchical groups. Object classes are constructed around "exemplars", that is, manifest objects in the data set, with the remaining instances assigned to their closest cluster centers. Effective, state-of-the-art implementations of…
Descriptors: Computer Software, Psychological Studies, Data Analysis, Research Methodology
McCoach, D. Betsy; Adelson, Jill L. – Gifted Child Quarterly, 2010
This article provides a conceptual introduction to the issues surrounding the analysis of clustered (nested) data. We define the intraclass correlation coefficient (ICC) and the design effect, and we explain their effect on the standard error. When the ICC is greater than 0, then the design effect is greater than 1. In such a scenario, the…
Descriptors: Statistical Significance, Error of Measurement, Correlation, Data Analysis
Biemer, Paul P.; Christ, Sharon L.; Wiesen, Christopher A. – Psychological Methods, 2009
Scale score measures are ubiquitous in the psychological literature and can be used as both dependent and independent variables in data analysis. Poor reliability of scale score measures leads to inflated standard errors and/or biased estimates, particularly in multivariate analysis. Reliability estimation is usually an integral step to assess…
Descriptors: Psychological Studies, Social Science Research, Reliability, Computation
Previous Page | Next Page »
Pages: 1 | 2