NotesFAQContact Us
Collection
Advanced
Search Tips
Publication Type
Reports - Descriptive25
Journal Articles24
Guides - Non-Classroom1
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing 1 to 15 of 25 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Shaw, Mairead; Flake, Jessica K. – Educational Measurement: Issues and Practice, 2023
Clustered data structures are common in many areas of educational and psychological research (e.g., students clustered in schools, patients clustered by clinician). In the course of conducting research, questions are often administered to obtain scores reflecting latent constructs. Multilevel measurement models (MLMMs) allow for modeling…
Descriptors: Hierarchical Linear Modeling, Research Methodology, Data Analysis, Structural Equation Models
Peer reviewed Peer reviewed
Direct linkDirect link
Jie Fang; Zhonglin Wen; Kit-Tai Hau – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Currently, dynamic structural equation modeling (DSEM) and residual DSEM (RDSEM) are commonly used in testing intensive longitudinal data (ILD). Researchers are interested in ILD mediation models, but their analyses are challenging. The present paper mathematically derived, empirically compared, and step-by-step demonstrated three types (i.e.,…
Descriptors: Structural Equation Models, Mediation Theory, Data Analysis, Longitudinal Studies
Nese, Joseph F. T.; Lai, Cheng-Fei; Anderson, Daniel – Behavioral Research and Teaching, 2013
Longitudinal data analysis in education is the study growth over time. A longitudinal study is one in which repeated observations of the same variables are recorded for the same individuals over a period of time. This type of research is known by many names (e.g., time series analysis or repeated measures design), each of which can imply subtle…
Descriptors: Longitudinal Studies, Data Analysis, Educational Research, Hierarchical Linear Modeling
Peer reviewed Peer reviewed
Direct linkDirect link
Peugh, James L.; DiLillo, David; Panuzio, Jillian – Structural Equation Modeling: A Multidisciplinary Journal, 2013
Mixed-dyadic data, collected from distinguishable (nonexchangeable) or indistinguishable (exchangeable) dyads, require statistical analysis techniques that model the variation within dyads and between dyads appropriately. The purpose of this article is to provide a tutorial for performing structural equation modeling analyses of cross-sectional…
Descriptors: Structural Equation Models, Data Analysis, Statistical Analysis, Computer Software
Peer reviewed Peer reviewed
Direct linkDirect link
Tucker-Drob, Elliot M. – Psychological Methods, 2011
Experiments allow researchers to randomly vary the key manipulation, the instruments of measurement, and the sequences of the measurements and manipulations across participants. To date, however, the advantages of randomized experiments to manipulate both the aspects of interest and the aspects that threaten internal validity have been primarily…
Descriptors: Experiments, Research Design, Inferences, Individual Differences
Peer reviewed Peer reviewed
Direct linkDirect link
Raykov, Tenko – Structural Equation Modeling: A Multidisciplinary Journal, 2011
This article is concerned with the question of whether the missing data mechanism routinely referred to as missing completely at random (MCAR) is statistically examinable via a test for lack of distributional differences between groups with observed and missing data, and related consequences. A discussion is initially provided, from a formal logic…
Descriptors: Data Analysis, Statistical Analysis, Probability, Structural Equation Models
Peer reviewed Peer reviewed
Direct linkDirect link
Lee, In Heok – Career and Technical Education Research, 2012
Researchers in career and technical education often ignore more effective ways of reporting and treating missing data and instead implement traditional, but ineffective, missing data methods (Gemici, Rojewski, & Lee, 2012). The recent methodological, and even the non-methodological, literature has increasingly emphasized the importance of…
Descriptors: Vocational Education, Data Collection, Maximum Likelihood Statistics, Educational Research
Peer reviewed Peer reviewed
Direct linkDirect link
Bai, Yun; Poon, Wai-Yin – Structural Equation Modeling: A Multidisciplinary Journal, 2009
Two-level data sets are frequently encountered in social and behavioral science research. They arise when observations are drawn from a known hierarchical structure, such as when individuals are randomly drawn from groups that are randomly drawn from a target population. Although 2-level data analysis in the context of structural equation modeling…
Descriptors: Structural Equation Models, Data Analysis, Simulation, Goodness of Fit
Peer reviewed Peer reviewed
Direct linkDirect link
Volkwein, J. Fredericks; Yin, Alexander C. – New Directions for Institutional Research, 2010
This chapter summarizes ten selected issues and common problems that arise in most assessment research projects. These include: (1) the uses of grades in assessment; (2) institutional review boards; (3) research design as a compromise; (4) standardized testing; (5) self-reported measures; (6) missing data; (7) weighting data; (8) conditional…
Descriptors: Research Design, Research Methodology, Standardized Tests, Least Squares Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Wu, Amery D.; Zumbo, Bruno D. – Social Indicators Research, 2008
Mediation and moderation are two theories for refining and understanding a causal relationship. Empirical investigation of mediators and moderators requires an integrated research design rather than the data analyses driven approach often seen in the literature. This paper described the conceptual foundation, research design, data analysis, as…
Descriptors: Research Design, Investigations, Structural Equation Models, Data Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Gonzalez, Jorge; De Boeck, Paul; Tuerlinckx, Francis – Psychological Methods, 2008
Structural equation models are commonly used to analyze 2-mode data sets, in which a set of objects is measured on a set of variables. The underlying structure within the object mode is evaluated using latent variables, which are measured by indicators coming from the variable mode. Additionally, when the objects are measured under different…
Descriptors: Structural Equation Models, Data Analysis, Evaluation Methods, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Olsen, Joseph A.; Kenny, David A. – Psychological Methods, 2006
Structural equation modeling (SEM) can be adapted in a relatively straightforward fashion to analyze data from interchangeable dyads (i.e., dyads in which the 2 members cannot be differentiated). The authors describe a general strategy for SEM model estimation, comparison, and fit assessment that can be used with either dyad-level or pairwise…
Descriptors: Structural Equation Models, Data Analysis, Models, Factor Analysis
Peer reviewed Peer reviewed
Raykov, Tenko; Marcoulides, George A.; Boyd, Jeremy – Structural Equation Modeling, 2003
Illustrates how commonly available structural equation modeling programs can be used to conduct some basic matrix manipulations and generate multivariate normal data with given means and positive definite covariance matrix. Demonstrates the outlined procedure. (SLD)
Descriptors: Data Analysis, Matrices, Simulation, Structural Equation Models
Peer reviewed Peer reviewed
Wendorf, Craig A. – Structural Equation Modeling, 2002
Compares two statistical approaches for the analysis of data obtained from married couples. Summarizes a current multilevel (or hierarchical) model that has demonstrated usefulness in marital research and respecifies this model into a more familiar structural equation modeling formulation. (SLD)
Descriptors: Data Analysis, Marriage, Spouses, Structural Equation Models
Peer reviewed Peer reviewed
Direct linkDirect link
Bauer, Daniel J. – Structural Equation Modeling: A Multidisciplinary Journal, 2005
To date, finite mixtures of structural equation models (SEMMs) have been developed and applied almost exclusively for the purpose of providing model-based cluster analyses. This type of analysis constitutes a direct application of the model wherein the estimated component distributions of the latent classes are thought to represent the…
Descriptors: Structural Equation Models, Multivariate Analysis, Data Analysis, Evaluation Methods
Previous Page | Next Page ยป
Pages: 1  |  2