NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing 1 to 15 of 31 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Danese, Anthony – Physics Teacher, 2022
In this paper I describe an interactive Gauss's law computer simulation using the GlowScript programming environment. The simulation calculates a point charge's electric field at locations on the surface of a Gaussian cube and displays the electric field in GlowScript's 3D graphics window. The point charge can be moved, and the electric field…
Descriptors: Computer Simulation, Science Instruction, Energy, Educational Technology
Peer reviewed Peer reviewed
Direct linkDirect link
Joaqui´n Gonza´lez; Eduardo Laborda; A´ngela Molina – Journal of Chemical Education, 2023
Theoretical and practical foundations of basic electrochemical concepts of heterogeneous charge transfer reactions that underline electrochemical processes are presented for their detailed study by undergraduate and postgraduate students. Several simple methods for calculating key variables, such as the half-wave potential, limiting current, and…
Descriptors: Chemistry, College Science, Science Instruction, Computer Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Perez-Ramirez, Miguel; Arroyo-Figueroa, G.; Ayala, A. – Interactive Learning Environments, 2021
The application of virtual reality (VR) technologies is beneficial to the training related to industrial processes. Mainly because the technologies allow training complex threatening tasks within a safe environment. The interactive three-dimensional (3D) representation of a real world seems to be a more effective learning medium than other…
Descriptors: Computer Simulation, Educational Technology, Technology Uses in Education, Training
Peer reviewed Peer reviewed
Direct linkDirect link
Wolf, Mark E.; Norris, J. Widener; Fynewever, Herb; Turney, Justin M.; Schaefer, Henry F., III – Journal of Chemical Education, 2022
Over the past half century, computational chemistry has evolved from a niche field to a ubiquitous pillar of modern chemical research. Driven by the increased demand for computational chemistry in research settings, the undergraduate curriculum has evolved alongside to ensure that students are well-equipped for modern research. Toward this end,…
Descriptors: Science Instruction, Science Laboratories, Chemistry, Computer Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Gagnon, Michel – Physics Education, 2020
At the end of the 18th-century, Charles Coulomb developed an apparatus to study the force between two electrified beads which allowed him to obtain his famous Coulomb's law. Today, as one of the most fundamental outcomes in classical electromagnetism, his result is revisited in most high school physics courses, where students are asked to…
Descriptors: Physics, Science Instruction, Teaching Methods, Scientific Principles
Peer reviewed Peer reviewed
Direct linkDirect link
Stolzenberger, Christoph; Frank, Florian; Trefzger, Thomas – Physics Education, 2022
With the help of augmented reality apps objects and text can be added virtually to the physical world (e.g. physical experiments) in real time. The augmented reality (AR) app 'PUMA: "Spannungslabor"' enhances simple electric circuits experiments for students with virtual representations based on the electron gas analogy including…
Descriptors: Physics, Science Instruction, Energy, Artificial Intelligence
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Mota-Babiloni, Adrián; Mateu-Royo, Carlos; Navarro-Esbrí, Joaquín; Barragán-Cervera, Ángel – Journal of Technology and Science Education, 2021
A significant amount of energy in the form of heat is lost in industrial processes once it is used in specific processes. Among different technologies, high-temperature heat pumps (HTHP) are a valuable method of recovering low-temperature waste heat in the industry in a very efficient way that can be activated using clean electricity. As a…
Descriptors: Computer Simulation, Laboratories, Engineering Education, Energy
Peer reviewed Peer reviewed
Direct linkDirect link
Calfa, Bruno; Banholzer, William; Alger, Monty; Doherty, Michael – Chemical Engineering Education, 2017
This paper describes a web-based suite of simulation games that have the purpose to enhance the chemical engineering curriculum with business-oriented decisions. Two simulation cases are discussed whose teaching topics include closing material and energy balances, importance of recycle streams, price-volume relationship in a dynamic market, impact…
Descriptors: Computer Simulation, Chemical Engineering, Computer Games, Energy
Peer reviewed Peer reviewed
Direct linkDirect link
Teichrew, Albert; Erb, Roger – Physics Education, 2020
Real situations are overlaid with virtual information using augmented reality technology. In a learning environment, this technology could give everyday relevance to abstract concepts. In this paper, we will show how physical structures in typical experiments can be simply augmented by virtual objects in physics classes. This is achieved by…
Descriptors: Science Instruction, Computer Software, Educational Technology, Telecommunications
Peer reviewed Peer reviewed
Direct linkDirect link
Shao, Michael; Shiflett, Mark B. – Chemical Engineering Education, 2021
Simulation software has experienced growing interest in chemical engineering curriculums for its usage in commercial engineering practices. This article describes the ASPEN Plus® version 10 (V10) simulations and a student teach students approach to integrate ASPEN in the chemical engineering curriculum at the University of Kansas (KU). Videos,…
Descriptors: Chemical Engineering, Teaching Methods, Computer Simulation, Computer Software
Peer reviewed Peer reviewed
Direct linkDirect link
Browning, Fred; Moore, Kaitlyn; Campos, Jennifer – Physics Teacher, 2019
The possibility of negative temperatures on the Kelvin scale is intriguing and confusing simultaneously. This is because students are used to thinking of temperature as a measure of the internal energy of a system. While this concept is good for many systems, it does not work for all systems. Nuclear and electron spin systems, along with lasers…
Descriptors: Science Instruction, Scientific Concepts, Concept Formation, Computer Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Kapp, Sebastian; Thees, Michael; Strzys, Martin P.; Beil, Fabian; Kuhn, Jochen; Amiraslanov, Orkhan; Javaheri, Hamraz; Lukowicz, Paul; Lauer, Frederik; Rheinländer, Carl; Wehn, Norbert – Physics Teacher, 2019
During the last decade the development of modern digital media such as smartphones and tablet computers has enabled new experimental possibilities in STEM education. Besides these now nearly ubiquitous devices, the fields of virtual reality (VR) and augmented reality (AR) also made huge progress and reached education. In this paper we introduce an…
Descriptors: Science Instruction, Secondary School Science, High School Students, Computer Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Fisher, Aidan A.E. – Journal of Chemical Education, 2019
Computational approaches toward simulating chemical systems and evaluating experimental data has gathered great momentum in recent years. The onset of more powerful computers and advanced software has been instrumental to this end. This manuscript presents a hands-on activity which trains students in basic coding skills within the Matlab…
Descriptors: Computer Software, Chemistry, Quantum Mechanics, Energy
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Cheng, Ka Wai Eric; Chan, Chung Lun – Education Sciences, 2019
A remote-controlled experiment for power electronics was developed for a virtual laboratory. Power converter experiments were set up, allowing students to conduct a remote-controlled experiment with special hardware and electric power. Students can activate parameter controls, connect wires, and tune electric load conditions with preset electronic…
Descriptors: Electronics, Engineering Education, Virtual Classrooms, Undergraduate Students
Peer reviewed Peer reviewed
Direct linkDirect link
Gates, Joshua – Physics Education, 2014
Despite their physics instructors' arguments to the contrary, introductory students can observe situations in which there seems to be compelling evidence for magnetic force doing work. The counterarguments are often highly technical and require physics knowledge beyond the experience of novice students, however. A simple example is presented…
Descriptors: Magnets, Scientific Principles, Science Instruction, Physics
Previous Page | Next Page »
Pages: 1  |  2  |  3