NotesFAQContact Us
Collection
Advanced
Search Tips
Publication Type
Reports - Descriptive20
Journal Articles19
Location
Laws, Policies, & Programs
Assessments and Surveys
Wechsler Intelligence Scale…1
What Works Clearinghouse Rating
Showing 1 to 15 of 20 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Davidson, Allison; Gundlach, Ellen – International Journal of Mathematical Education in Science and Technology, 2023
A disadvantage to online clothes shopping is the inability to try on clothing to test the fit. A class project is discussed where students consult with the CEO of an online mensware clothing company to explore ways in which an online clothing customer can be assured of a superior fit by developing statistical models based on a shopper's height and…
Descriptors: Internet, Retailing, Prediction, Clothing
Peer reviewed Peer reviewed
Direct linkDirect link
Raykov, Tenko; Marcoulides, George A. – Measurement: Interdisciplinary Research and Perspectives, 2023
This article outlines a readily applicable procedure for point and interval estimation of the population discrepancy between reliability and the popular Cronbach's coefficient alpha for unidimensional multi-component measuring instruments with uncorrelated errors, which are widely used in behavioral and social research. The method is developed…
Descriptors: Measurement, Test Reliability, Measurement Techniques, Error of Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Noma, Hisashi; Hamura, Yasuyuki; Gosho, Masahiko; Furukawa, Toshi A. – Research Synthesis Methods, 2023
Network meta-analysis has been an essential methodology of systematic reviews for comparative effectiveness research. The restricted maximum likelihood (REML) method is one of the current standard inference methods for multivariate, contrast-based meta-analysis models, but recent studies have revealed the resultant confidence intervals of average…
Descriptors: Network Analysis, Meta Analysis, Regression (Statistics), Error of Measurement
Dan Soriano; Eli Ben-Michael; Peter Bickel; Avi Feller; Samuel D. Pimentel – Grantee Submission, 2023
Assessing sensitivity to unmeasured confounding is an important step in observational studies, which typically estimate effects under the assumption that all confounders are measured. In this paper, we develop a sensitivity analysis framework for balancing weights estimators, an increasingly popular approach that solves an optimization problem to…
Descriptors: Statistical Analysis, Computation, Mathematical Formulas, Monte Carlo Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Raykov, Tenko; Marcoulides, George A. – Educational and Psychological Measurement, 2018
This article outlines a procedure for examining the degree to which a common factor may be dominating additional factors in a multicomponent measuring instrument consisting of binary items. The procedure rests on an application of the latent variable modeling methodology and accounts for the discrete nature of the manifest indicators. The method…
Descriptors: Measurement Techniques, Factor Analysis, Item Response Theory, Likert Scales
Peer reviewed Peer reviewed
Direct linkDirect link
Seixas, T. M.; da Silva, M. A. Salgueiro – Physics Teacher, 2015
When conducting experiments involving the measurement of physically related quantities, choosing an appropriate spacing for the experimental independent variable is a crucial procedure whose consequences may go beyond data graphical visualization. This is particularly true if the measured quantities are nonlinearly related and experimental errors…
Descriptors: Measurement, Data, Error of Measurement, Intervals
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Arzumanyan, George; Halcoussis, Dennis; Phillips, G. Michael – American Journal of Business Education, 2015
This paper presents the Agresti & Coull "Adjusted Wald" method for computing confidence intervals and margins of error for common proportion estimates. The presented method is easily implementable by business students and practitioners and provides more accurate estimates of proportions particularly in extreme samples and small…
Descriptors: Business Administration Education, Error of Measurement, Error Patterns, Intervals
Peer reviewed Peer reviewed
Direct linkDirect link
Gilliland, Dennis; Melfi, Vince – Journal of Statistics Education, 2010
Confidence interval estimation is a fundamental technique in statistical inference. Margin of error is used to delimit the error in estimation. Dispelling misinterpretations that teachers and students give to these terms is important. In this note, we give examples of the confusion that can arise in regard to confidence interval estimation and…
Descriptors: Statistical Inference, Surveys, Intervals, Sample Size
Peer reviewed Peer reviewed
Direct linkDirect link
Lee, Chun-Ting; Zhang, Guangjian; Edwards, Michael C. – Multivariate Behavioral Research, 2012
Exploratory factor analysis (EFA) is often conducted with ordinal data (e.g., items with 5-point responses) in the social and behavioral sciences. These ordinal variables are often treated as if they were continuous in practice. An alternative strategy is to assume that a normally distributed continuous variable underlies each ordinal variable.…
Descriptors: Personality Traits, Intervals, Monte Carlo Methods, Factor Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Raykov, Tenko; Penev, Spiridon – Structural Equation Modeling: A Multidisciplinary Journal, 2010
A latent variable analysis procedure for evaluation of reliability coefficients for 2-level models is outlined. The method provides point and interval estimates of group means' reliability, overall reliability of means, and conditional reliability. In addition, the approach can be used to test simple hypotheses about these parameters. The…
Descriptors: Reliability, Evaluation, Models, Intervals
Peer reviewed Peer reviewed
Direct linkDirect link
Parker, Richard I.; Vannest, Kimberly J.; Davis, John L.; Clemens, Nathan H. – Journal of Special Education, 2012
Within a response to intervention model, educators increasingly use progress monitoring (PM) to support medium- to high-stakes decisions for individual students. For PM to serve these more demanding decisions requires more careful consideration of measurement error. That error should be calculated within a fixed linear regression model rather than…
Descriptors: Measurement, Computation, Response to Intervention, Regression (Statistics)
Peer reviewed Peer reviewed
Direct linkDirect link
Psychological Methods, 2008
Reports an error in "Confidence intervals for gamma-family measures of ordinal association" by Carol M. Woods (Psychological Methods, 2007[Jun], Vol 12[2], 185-204). The note corrects simulation results presented in the article concerning the performance of confidence intervals (CIs) for Spearman's r-sub(s). An error in the author's C++ code…
Descriptors: Intervals, Computation, Error of Measurement, Measurement Techniques
Peer reviewed Peer reviewed
Direct linkDirect link
Bonnett, Douglas G. – Psychological Methods, 2008
Most psychology journals now require authors to report a sample value of effect size along with hypothesis testing results. The sample effect size value can be misleading because it contains sampling error. Authors often incorrectly interpret the sample effect size as if it were the population effect size. A simple solution to this problem is to…
Descriptors: Intervals, Hypothesis Testing, Effect Size, Sampling
Peer reviewed Peer reviewed
Direct linkDirect link
Jamshidian, M.; Khatoonabadi, M. – International Journal of Mathematical Education in Science and Technology, 2007
Almost all introductory and intermediate level statistics textbooks include the topic of confidence interval for the population mean. Almost all these texts introduce the median as a robust measure of central tendency. Only a few of these books, however, cover inference on the population median and in particular confidence interval for the median.…
Descriptors: Intervals, Simulation, Computation, Error of Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Keselman, H. J.; Algina, James; Lix, Lisa M.; Wilcox, Rand R.; Deering, Kathleen N. – Psychological Methods, 2008
Standard least squares analysis of variance methods suffer from poor power under arbitrarily small departures from normality and fail to control the probability of a Type I error when standard assumptions are violated. This article describes a framework for robust estimation and testing that uses trimmed means with an approximate degrees of…
Descriptors: Intervals, Testing, Least Squares Statistics, Effect Size
Previous Page | Next Page ยป
Pages: 1  |  2