NotesFAQContact Us
Collection
Advanced
Search Tips
Publication Type
Reports - Descriptive17
Journal Articles15
Reports -…1
Audience
Teachers1
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing 1 to 15 of 17 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Holly M. Golecki; Jason Robinson; Caroline Cvetkovic; Conor Walsh – Biomedical Engineering Education, 2024
Experiential learning in biomedical engineering curricula is a critical component to developing graduates who are equipped to contribute to technical design tasks in their careers. This paper presents the development and implementation of an undergraduate and graduate-level soft material robotics design course focused on applications in medical…
Descriptors: Equipment, Design, Robotics, Experiential Learning
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Jeremy Elliott-Engel; Kelly Robinson; Donna Westfall-Rudd – Journal of Human Sciences & Extension, 2019
STEM literacy is identified as a necessary skill for participation in the future workforce. 4-H has responded to this need to develop STEM-ready youth by expanding access to project areas like Robotics. It has been acknowledged that recruiting and training STEM competent staff and volunteers is a limitation in expanding these types of programs. At…
Descriptors: STEM Education, Youth Clubs, Robotics, Volunteers
Peer reviewed Peer reviewed
Direct linkDirect link
Lott, Kimberly; Urbanek-Carney, Sara; Mitchell, April – Science and Children, 2019
Robotics is emerging as an effective strategy for bridging the gap between technology and engineering design in early childhood classrooms (Bers, Seddighin, and Sullivan 2013). Using a science, technology, engineering and mathematics (STEM) grant received from the authors' school, they purchased a KIBO-18 set from KinderLab Robotics…
Descriptors: Robotics, STEM Education, Teaching Methods, Programming
Peer reviewed Peer reviewed
Direct linkDirect link
Hsiung, Steve C.; Deal, Walter F.; Tuluri, Francis – Technology and Engineering Teacher, 2017
UNITE is a program sponsored by the Army Educational Outreach Program (AEOP, 2015). The STEM Enrichment Activities of AEOP are designed to spark student interest in science, technology, engineering, and mathematics, especially among the underserved and those in earlier grades and educators by providing exciting, engaging, interactive, hands-on…
Descriptors: Summer Programs, Workshops, STEM Education, Competition
Peer reviewed Peer reviewed
Direct linkDirect link
Loughran, Melissa – Primary Science, 2017
The challenge schools face when creating a science, technology, engineering and mathematics (STEM) program is how to incorporate the "E" into the curriculum. The author's school was meeting the National (U. K.) Curriculum Science, Technology and Maths learning objectives, so how could they justify adding another subject into the mix…
Descriptors: STEM Education, Engineering Education, Teaching Methods, Experiential Learning
Peer reviewed Peer reviewed
Direct linkDirect link
Grewal, Dhruv; Motyka, Scott; Levy, Michael – Journal of Marketing Education, 2018
The pace of retail evolution has increased dramatically, with the spread of the Internet and as consumers have become more empowered by mobile phones and smart devices. This article outlines significant retail innovations that reveal how retailers and retailing have evolved in the past several decades. In the same spirit, the authors discuss how…
Descriptors: Retailing, Marketing, Futures (of Society), Teaching Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Sababha, Belal H.; Alqudah, Yazan A.; Abualbasal, Abdelraheem; AlQaralleh, Esam A. – EURASIA Journal of Mathematics, Science & Technology Education, 2016
Exposing engineering students during their education to real-world problems and giving them the chance to apply what they learn in the classroom is a vital element of engineering education. The Embedded Systems course at Princess Sumaya University for Technology (PSUT) is one of the main courses that bridge the gap between theoretical electrical…
Descriptors: Active Learning, Student Projects, Engineering Education, Foreign Countries
Rainie, Lee; Anderson, Janna – Pew Research Center, 2017
Machines are eating humans' jobs talents. And it is not just about jobs that are repetitive and low skill. Automation, robotics, algorithms and artificial intelligence (AI) in recent times have shown they can do equal or sometimes even better work than humans who are dermatologists, insurance claims adjusters, lawyers, seismic testers in oil…
Descriptors: Futures (of Society), Educational Trends, Trend Analysis, Job Training
Peer reviewed Peer reviewed
Direct linkDirect link
Crenshaw, T. L. A. – IEEE Transactions on Education, 2013
Cyber-physical systems are a genre of networked real-time systems that monitor and control the physical world. Examples include unmanned aerial vehicles and industrial robotics. The experts who develop these complex systems are retiring much faster than universities are graduating engineering majors. As a result, it is important for undergraduates…
Descriptors: Robotics, Undergraduate Students, Engineering Education, Student Projects
Peer reviewed Peer reviewed
Direct linkDirect link
Jackson, Jim – Tech Directions, 2013
In this article, the author describes a program that he says has "made being smart cool." "FIRST" (For Inspiration and Recognition of Science and Technology) Robotics has made a significant contribution toward progress in advancing science, technology, engineering, and mathematics (STEM) courses and STEM careers with young people. "FIRST" Robotics…
Descriptors: Robotics, STEM Education, After School Programs, Secondary School Students
Peer reviewed Peer reviewed
Direct linkDirect link
Cappelleri, D. J.; Vitoroulis, N. – IEEE Transactions on Education, 2013
This paper presents a series of novel project-based learning labs for an introductory robotics course that are developed into a semester-long Robotic Decathlon. The last three events of the Robotic Decathlon are used as three final one-week-long project tasks; these replace a previous course project that was a semester-long robotics competition.…
Descriptors: Robotics, Introductory Courses, Student Projects, Active Learning
Mac Iver, Martha Abele; Mac Iver, Douglas J. – Baltimore Education Research Consortium, 2014
Recognizing the importance of both keeping middle school students engaged and improving their math skills, Baltimore City Public Schools (City Schools) developed a summer school STEM program involving not only math and science instruction but also the experience of building a robot and competing with those robots in a city-wide tournament.…
Descriptors: Urban Schools, Summer Programs, Robotics, Mathematics Skills
Peer reviewed Peer reviewed
Direct linkDirect link
McLurkin, J.; Rykowski, J.; John, M.; Kaseman, Q.; Lynch, A. J. – IEEE Transactions on Education, 2013
This paper describes the experiences of using an advanced, low-cost robot in science, technology, engineering, and mathematics (STEM) education. It presents three innovations: It is a powerful, cheap, robust, and small advanced personal robot; it forms the foundation of a problem-based learning curriculum; and it enables a novel multi-robot…
Descriptors: Robotics, STEM Education, Engineering Education, Problem Based Learning
Peer reviewed Peer reviewed
Direct linkDirect link
Yilmaz, M.; Ozcelik, S.; Yilmazer, N.; Nekovei, R. – IEEE Transactions on Education, 2013
This paper presents an innovative two-course, laboratory-based, and design-oriented robotics educational model. The robotics curriculum exposed senior-level undergraduate students to major robotics concepts, and enhanced the student learning experience in hybrid learning environments by incorporating the IEEE Region-5 annual robotics competition…
Descriptors: Robotics, College Curriculum, College Seniors, Elective Courses
Peer reviewed Peer reviewed
Direct linkDirect link
Robinson, Trevor P.; Stewardson, Gary A. – Technology and Engineering Teacher, 2012
Robotic competitions continue to gain popularity in the educational community as a way to engage students in hands-on learning that can raise a student's interest in science, technology, engineering, and mathematics. In 1992, For Inspiration and Recognition of Science and Technology (FIRST) held its first competition and presented a style of…
Descriptors: Competition, Robotics, Experiential Learning, STEM Education
Previous Page | Next Page ยป
Pages: 1  |  2