NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing 1 to 15 of 95 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Abboud, Elias – International Journal of Mathematical Education in Science and Technology, 2023
In this article, we consider certain minimization problems. If d[subscript 1], d[subscript 2] and d[subscript 3] are the distances of a boundary or inner point to the sides of a given triangle, find the point which minimizes d[subscript 1][superscript n] + d[subscript 2][superscript n] + d[subscript 3][superscript n] for positive integer n. These…
Descriptors: Computer Software, Mathematics Instruction, Geometry, Calculus
Peer reviewed Peer reviewed
Direct linkDirect link
Robert J. Fisher – Chemical Engineering Education, 2025
Strategies are proposed that promote use of an Integrated Applied Mathematics (IAM) approach to enhance teaching of advanced problem-solving and analysis skills. Three scenarios of 1-dimensional transport processes are presented that support using Error Function analyses when considering short time/small penetration depths in finite geometries.…
Descriptors: Chemical Engineering, Mathematics, Problem Solving, Skill Development
Peer reviewed Peer reviewed
Direct linkDirect link
Milici, Pietro; Plantevin, Frédérique; Salvi, Massimo – International Journal of Mathematical Education in Science and Technology, 2022
We propose an original machine that traces conics and some transcendental curves (oblique trajectories of confocal conics) by the solution of inverse tangent problems. For such a machine, we also provide the 3D-printable model to be used as an intriguing supplement for geometry, calculus, or ordinary differential equations classes.
Descriptors: Computer Peripherals, Printing, Geometry, Geometric Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
Wares, Arsalan; Valori, Giovanna – International Journal of Mathematical Education in Science and Technology, 2021
In this note we describe the mathematics that emerges from the construction of an origami box. We first construct a simple origami box from two rectangular sheets and then discuss some of the mathematical questions that arise in the context of algebra, geometry and calculus.
Descriptors: Mathematics Instruction, Geometry, Algebra, Calculus
Peer reviewed Peer reviewed
Direct linkDirect link
Gabour, Manal – International Journal of Mathematical Education in Science and Technology, 2022
In this article special sequences involving the Butterfly theorem are defined. The Butterfly theorem states that if M is the midpoint of a chord PQ of a circle, then following some definite instructions, it is possible to get two other points X and Y on PQ, such that M is also the midpoint of the segment XY. The convergence investigation of those…
Descriptors: Mathematics Instruction, Computer Software, Secondary School Mathematics, College Mathematics
Peer reviewed Peer reviewed
Direct linkDirect link
Carletti, Timoteo; Fanelli, Duccio; Guarino, Alessio – Physics Education, 2021
Geometry, calculus and in particular integrals, are too often seen by young students as technical tools with no link to the reality. This fact generates a loss of interest in students with a consequent removal of motivation in the study of such topics and more widely in pursuing scientific curricula. With this note we put to the fore a simple…
Descriptors: Physics, Science Instruction, Student Motivation, Geometry
Peer reviewed Peer reviewed
Direct linkDirect link
Wares, Arsalan – Mathematics Teacher: Learning and Teaching PK-12, 2021
Many mathematics teachers and students are familiar with the typical "box problem." In this type of problem, one takes a rectangular (or a square) sheet of paper and cuts out four squares from the four corners of the sheet and then folds the four strips up to form a box. Math problems like this are seen in middle school, high school,…
Descriptors: Mathematics Instruction, Teaching Methods, Manipulative Materials, Mathematical Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
Marianna Bosch; Angel Gutierrez; Salvador Llinares – ZDM: Mathematics Education, 2024
This survey paper presents recent relevant research in mathematics education produced in Spain, which allows the identification of different broad lines of research developed by Spanish groups of scholars. First, we present and describe studies whose research objectives are related to student learning of specific curricular contents and…
Descriptors: Foreign Countries, Mathematics Education, Preservice Teacher Education, Mathematics Skills
Peer reviewed Peer reviewed
Direct linkDirect link
Wares, Arsalan – International Journal of Mathematical Education in Science and Technology, 2020
The purpose of these notes is to generalize and extend a challenging geometry problem from a mathematics competition. The notes also contain solution sketches pertaining to the problems discussed.
Descriptors: Generalization, Competition, Mathematics, Problem Solving
Peer reviewed Peer reviewed
Direct linkDirect link
Boucher, Chris – International Journal of Mathematical Education in Science and Technology, 2018
This note presents a derivation of Viète's classic product approximation of pi that relies on only the Pythagorean Theorem. We also give a simple error bound for the approximation that, while not optimal, still reveals the exponential convergence of the approximation and whose derivation does not require Taylor's Theorem.
Descriptors: Mathematics Instruction, Geometry, Geometric Concepts, Algebra
Peer reviewed Peer reviewed
Direct linkDirect link
Katrina Palmer; William Bauldry; Michael J. Bossé; Jaehee Post – PRIMUS, 2022
Most any students can explain the meaning of "a[superscript b]", for "a" [element-of] [set of real numbers] and for "b" [element-of] [set of integers]. And some students may be able to explain the meaning of "(a + bi)[superscript c]," for "a, b" [element-of] [set of real numbers] and for…
Descriptors: Mathematics Instruction, Mathematical Concepts, Secondary School Mathematics, College Mathematics
Peer reviewed Peer reviewed
Direct linkDirect link
Dray, Tevian; Gire, Elizabeth; Kustusch, Mary Bridget; Manogue, Corinne A.; Roundy, David – PRIMUS, 2019
Calculus, as commonly taught, describes certain operations on explicit functions, but science relies on experimental data, which is inherently discrete. In the face of this disparity, how can we help students transition from lower-division mathematics courses to upper-division coursework in other STEM disciplines? We discuss here our efforts to…
Descriptors: Calculus, Physics, Majors (Students), Science Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Naanou, Paul; Rhodes, Sam – Mathematics Teacher: Learning and Teaching PK-12, 2020
The contexts of the problems educators choose can affect students' mathematical identities by affecting their abilities to relate to the mathematics (Middleton, Jansen, and Goldin 2017). Moreover, these choices send powerful messages to students about the relevancy of mathematics to their own lives (Felton 2010). Eliciting and drawing on student…
Descriptors: Mathematics Instruction, Culturally Relevant Education, Mathematical Concepts, Concept Formation
Peer reviewed Peer reviewed
Direct linkDirect link
Cline, K.; Fasteen, J.; Francis, A.; Sullivan, E.; Wendt, T. – PRIMUS, 2020
We have integrated computer programming instruction into the required courses of our mathematics major. Our majors take a sequence of four courses in their first 2 years, each of which is paired with a weekly 75-minute computer lab period that has a dual purpose of both computationally exploring the mathematical concepts from the lecture portion…
Descriptors: College Mathematics, Majors (Students), Programming, Teaching Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Tisdell, Christopher C. – International Journal of Mathematical Education in Science and Technology, 2017
For over 50 years, the learning of teaching of "a priori" bounds on solutions to linear differential equations has involved a Euclidean approach to measuring the size of a solution. While the Euclidean approach to "a priori" bounds on solutions is somewhat manageable in the learning and teaching of the proofs involving…
Descriptors: Mathematics Instruction, Calculus, Geometry, Geometric Concepts
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7