NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 6 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Holly M. Golecki; Jason Robinson; Caroline Cvetkovic; Conor Walsh – Biomedical Engineering Education, 2024
Experiential learning in biomedical engineering curricula is a critical component to developing graduates who are equipped to contribute to technical design tasks in their careers. This paper presents the development and implementation of an undergraduate and graduate-level soft material robotics design course focused on applications in medical…
Descriptors: Equipment, Design, Robotics, Experiential Learning
Peer reviewed Peer reviewed
Direct linkDirect link
Gómez-de-Gabriel, Jesús Manuel; Mandow, Anthony; Fernández-Lozano, Jesús; García-Cerezo, Alfonso – IEEE Transactions on Education, 2015
This paper proposes lab work for learning fault detection and diagnosis (FDD) in mechatronic systems. These skills are important for engineering education because FDD is a key capability of competitive processes and products. The intended outcome of the lab work is that students become aware of the importance of faulty conditions and learn to…
Descriptors: Robotics, Engineering Education, Laboratories, Higher Education
Peer reviewed Peer reviewed
Direct linkDirect link
Navarro, P. J.; Fernandez, C.; Sanchez, P. – IEEE Transactions on Education, 2013
The interdisciplinary nature of robotics allows mobile robots to be used successfully in a broad range of courses at the postgraduate level and in Ph.D. research. Practical industrial-like mobile robotic demonstrations encourage students and increase their motivation by providing them with learning benefits not achieved with traditional…
Descriptors: Robotics, Graduate Study, Computer Science Education, Computer Software
Peer reviewed Peer reviewed
Direct linkDirect link
Silva, E.; Almeida, J.; Martins, A.; Baptista, J. P.; Campos Neves, B. – IEEE Transactions on Education, 2013
Robotics research in Portugal is increasing every year, but few students embrace it as one of their first choices for study. Until recently, job offers for engineers were plentiful, and those looking for a degree in science and technology would avoid areas considered to be demanding, like robotics. At the undergraduate level, robotics programs are…
Descriptors: Foreign Countries, Robotics, Engineering Education, Masters Programs
Peer reviewed Peer reviewed
Direct linkDirect link
McLurkin, J.; Rykowski, J.; John, M.; Kaseman, Q.; Lynch, A. J. – IEEE Transactions on Education, 2013
This paper describes the experiences of using an advanced, low-cost robot in science, technology, engineering, and mathematics (STEM) education. It presents three innovations: It is a powerful, cheap, robust, and small advanced personal robot; it forms the foundation of a problem-based learning curriculum; and it enables a novel multi-robot…
Descriptors: Robotics, STEM Education, Engineering Education, Problem Based Learning
Peer reviewed Peer reviewed
Sharp, Robert L.; And Others – Analytical Chemistry, 1988
Discusses the use of robotics in the analytical chemistry laboratory. Suggests using a modular setup to best use robots and laboratory space. Proposes a sample preparation system which can perform aliquot measurement, dilution, mixing, separation, and sample transfer. Recognizes attributes and shortcomings. (ML)
Descriptors: Automation, Biochemistry, Chemistry, College Science