NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
No Child Left Behind Act 20016
Assessments and Surveys
What Works Clearinghouse Rating
Showing 1 to 15 of 55 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Wörner, C. H.; Rojas, Roberto – Physics Teacher, 2021
In this note, the classical Doppler shift for some accelerated mechanical systems is considered under a common graphical approach. In one dimension, we study uniform accelerated motion and simple harmonic motion. In two dimensions, uniform circular motion and pendular motion are considered. In each case, an elementary treatment shows that the…
Descriptors: Mechanics (Physics), Motion, Scientific Concepts, Graphs
Peer reviewed Peer reviewed
Direct linkDirect link
Ramos, L. M.; Reis, C. R. N.; Calheiro, L. B.; Goncalves, A. M. B. – Physics Education, 2021
Using a joystick module, we followed the movement of a chaotic magnetic pendulum. The pendulum bar was attached to a joystick that served as a pivot point and biaxial angular motion sensor. Using an Arduino board, we could follow the position as a function of time along both the "x" and "y"-axis and draw a graph showing the…
Descriptors: Physics, Science Instruction, Computer Software, Motion
Peer reviewed Peer reviewed
Direct linkDirect link
Sokolowski, Andrzej – Physics Education, 2019
This paper is a continuation of an earlier discussion in this journal about adhering to principles of mathematics while presenting function graphs in physics. As in the previous paper, the importance of the vertical line test was examined, this paper delves more in-depth, and it pinpoints a need for presenting graphs with a continuous rate of…
Descriptors: Graphs, Physics, Mathematics Education, Calculus
Peer reviewed Peer reviewed
Direct linkDirect link
Nemirovsky, Ricardo; Ferrara, Francesca; Ferrari, Giulia; Adamuz-Povedano, Natividad – Educational Studies in Mathematics, 2020
This paper focuses on the emergence of abstraction through the use of a new kind of motion detector--WiiGraph--with 11-year-old children. In the selected episodes, the children used this motion detector to create three simultaneous graphs of position vs. time: two graphs for the motion of each hand and a third one corresponding to their…
Descriptors: Motion, Algebra, Mathematics Instruction, Computer Software
Peer reviewed Peer reviewed
Direct linkDirect link
de Oliveira, A. L.; de Jesus, V. L. B.; Sasaki, D. G. G. – Physics Education, 2021
The drag effect on a falling ball caused by air is a conventional subject in the most well-known textbooks of classical mechanics and fluid dynamics. Further, there are some papers that employ video analysis to track objects movements in the air making it possible to obtain position data as a function of time and its graphs. However, none of them…
Descriptors: Science Instruction, Physics, Scientific Concepts, Concept Formation
Peer reviewed Peer reviewed
Direct linkDirect link
Sengul, Ozden – School Science Review, 2020
This article describes the implementation of an activity with a Predict-Observe-Explain (POE) learning cycle to teach the concepts of velocity and acceleration to physics students aged 17-19. The study indicates how the instructor enacted the activity and provides sample student responses and group discussions. The description includes an example…
Descriptors: Science Instruction, College Science, Undergraduate Students, Physics
Peer reviewed Peer reviewed
Direct linkDirect link
Sokolowski, Andrzej – Physics Teacher, 2018
Traditional school laboratory exercises on a system of moving objects connected by strings involve deriving expressions for the system acceleration, a = (?F)/m, and sketching a graph of acceleration vs. force. While being in the form of rational functions, these expressions present great opportunities for broadening the scope of the analysis by…
Descriptors: Physics, Scientific Concepts, Inferences, Science Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Frank, Brian W. – Physics Teacher, 2018
The goal of this paper is to illustrate different ways that cardsorting activities (or "card stacks") can be implemented in the introductory physics classroom, along with various tips and resources for getting started. My first attempt at developing a card stack came about from simply wanting to try out a fun way to change student…
Descriptors: Task Analysis, Problem Sets, Introductory Courses, Physics
Peer reviewed Peer reviewed
Direct linkDirect link
Janney, Benjamin A.; Sobotka, Alex J.; Kidd, Aaron E. – Clearing House: A Journal of Educational Strategies, Issues and Ideas, 2022
Despite holding wide-ranging experiences with constant velocity and non-zero acceleration, students wrestling with physical science concepts struggle to demarcate the two distinct characteristics of motion. In fact, this prior experience and loose familiarity with associated terminology often act as an obstacle toward a deep and robust…
Descriptors: Scientific Concepts, Physical Sciences, Motion, Experience
Peer reviewed Peer reviewed
Direct linkDirect link
Stoeckel, Marta R. – Science Teacher, 2018
Along-standing energy lab involves dropping bouncy balls and measuring their rebound heights on successive bounces. The lab demonstrates a situation in which the mechanical energy of a system is not conserved. Although students enjoyed the lab, the author wanted to deepen their thinking about energy, including the connections to motion, with a new…
Descriptors: Energy, Science Instruction, Scientific Concepts, Misconceptions
Peer reviewed Peer reviewed
Direct linkDirect link
Choffin, Amy; Johnston, Laura – Science and Children, 2018
This article describes how two teachers implemented a 5E lesson in a third-grade classroom where the students had been working with forces/motion and investigating things that move like pendulums, swing sets, and various toys. The lesson was included as part of a larger unit on motion. The desired outcome for this lesson was for students to…
Descriptors: Grade 3, Elementary School Science, Science Education, Motion
Peer reviewed Peer reviewed
Direct linkDirect link
Ng, Chiu-king – Physics Education, 2016
Instead of solving ordinary differential equations (ODEs), the damped simple harmonic motion (SHM) is surveyed qualitatively from basic mechanics and quantitatively by the instrumentality of a graph of velocity against displacement. In this way, the condition b ? [square root]4mk for the occurrence of the non-oscillating critical damping and…
Descriptors: Problem Solving, Calculus, Motion, Qualitative Research
Peer reviewed Peer reviewed
Direct linkDirect link
Berryhill, Erin; Herrington, Deborah; Oliver, Keith – Physics Teacher, 2016
Kinematics is a topic students are unknowingly aware of well before entering the physics classroom. Students observe motion on a daily basis. They are constantly interpreting and making sense of their observations, unintentionally building their own understanding of kinematics before receiving any formal instruction. Unfortunately, when students…
Descriptors: Physics, Motion, Prior Learning, Teaching Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Christie, Derek – Physics Teacher, 2014
This simple experiment uses an unusual graph straightening exercise to confirm the parallel axis theorem for an irregular object. Along the way, it estimates experimental values for g and the moment of inertia of a tennis racket. We use Excel to find a 95% confidence interval for the true values.
Descriptors: Graphs, Science Education, Racquet Sports, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Sadler, Philip M.; Garfield, Eliza N.; Tremblay, Alex; Sadler, Daniel J. – Physics Teacher, 2012
Those who come to Cambridge soon learn that the fastest route between Harvard and MIT is by the subway. For many students, this short ride is a quick and easy way to link physics and calculus. A simple, homemade accelerometer provides all the instrumentation necessary to produce accurate graphs of acceleration, velocity, and displacement position…
Descriptors: Physics, Mechanics (Physics), Motion, Calculus
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4