NotesFAQContact Us
Collection
Advanced
Search Tips
Publication Type
Journal Articles114
Reports - Descriptive114
Guides - Classroom - Teacher1
Audience
Teachers20
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing 1 to 15 of 114 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Aok, Yoki; Yawata, Kazushi – Physics Teacher, 2022
A new system for tracking a metal ball rolling on the slope of the touch panel of a tablet computer was developed. The widespread introduction of tablets in educational environments allows the use of a convenient dynamic measurement in schools.
Descriptors: Science Experiments, Measurement Techniques, Motion, Handheld Devices
Peer reviewed Peer reviewed
Direct linkDirect link
Sarkar, Soumen; Pal, Sanjoy Kumar; Chakrabarti, Surajit – Physics Teacher, 2023
A smartphone is a powerful learning aid in the hands of a large section of students around the world. The camera of the phone can be used for several learning purposes apart from its obvious purpose of photographing. If the focal length of the lens of the camera can be determined, several experiments in optics can be performed with it. In some…
Descriptors: Telecommunications, Handheld Devices, Optics, Physics
Peer reviewed Peer reviewed
Direct linkDirect link
Zhu, Pengfei; Ling, Yizhou – Journal of Chemical Education, 2022
Conventional mobile phone colorimetry usually utilizes the RGB color mode to measure concentration of solutions, but the paper entitled "Determining the Amount of Copper(II) Ions in a Solution Using a Smartphone" proposes the use of hue ("H") to measure the concentration. It is pointed out that the "H" value increases…
Descriptors: Color, Telecommunications, Handheld Devices, Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Yao Wu; Chengxu Hu; Yan Hu; XiLian Cao; Jiaxin Zhang; Menglu Wang; Jun Cao; Ronghui Que – Journal of Chemical Education, 2024
Practical experiments enhance students' understanding of basic concepts and promote deep learning experiences in chemistry. The smartphone application of Lab4Chemistry was utilized to replace colorimeters with smartphone camera sensors. Low-cost and readily available materials, including anthocyanin (fresh red cabbage) and common kitchen…
Descriptors: Science Experiments, Chemistry, Science Instruction, Telecommunications
Peer reviewed Peer reviewed
Direct linkDirect link
Mayer, V. V.; Varaksina, E. I. – Physics Education, 2022
We propose a laboratory experiment on the quantitative study of the normal dispersion of light. A triangular isosceles prism made of flint glass TF3 is used as the object of study, and we describe a simple and affordable device for observing and photographing the dispersion spectrum on a smartphone. A possibility of the quantitative investigation…
Descriptors: Light, Physics, Science Experiments, Science Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Organtini, Giovanni – Physics Teacher, 2021
A simple experimental setup using a smartphone and a pair of speakers is presented to perform an accurate experiment on interference of two point sources. The proposed experiment allows simple but interesting measurements to be done to introduce students to interference and diffraction phenomena. As such, the experiment effectively introduces the…
Descriptors: Science Experiments, Telecommunications, Handheld Devices, Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Marranghello, Guilherme Frederico; Lucchese, Márcia Maria; da Rocha, Fábio Saraiva – Physics Teacher, 2022
Water rockets can be used in a variety of ways, from schools to planetariums, with very young kids or adults. We propose here simple forms to work with water rockets, going one step further than a simple launch. A smartphone can be used to film the launch and analyze its motion with video analysis or it can even be attached to the rocket, using…
Descriptors: Physics, Video Technology, Science Instruction, Water
Peer reviewed Peer reviewed
Direct linkDirect link
Namchanthra, Witchayaporn; Puttharugsa, Chokchai – Physics Teacher, 2021
Nowadays, electronic devices (especially smartphones) are developed to use as an alternative tool for recording experimental data in physics experiments. This is because of the embedded sensors in a smartphone such as the accelerometer, gyroscope, magnetometer, camera, microphone, and speaker. These sensors were used in physics experiments, such…
Descriptors: Physics, Handheld Devices, Measurement Equipment, Motion
Peer reviewed Peer reviewed
Direct linkDirect link
Pusch, Alexander; Ubben, Malte S.; Laumann, Daniel; Heinicke, Susanne; Heusler, Stefan – Physics Education, 2021
An easy circuit for measuring the power of a solar panel in physics classroom by using the microcontroller Arduino will be introduced in this article. The measured data is transferred via Bluetooth to the smartphone app 'phyphox' where it is displayed graphically. The circuitry enables measuring the power of a solar panel in different situations…
Descriptors: Physics, Science Education, Light, Science Experiments
Peer reviewed Peer reviewed
Direct linkDirect link
Shakur, Asif; Binz, Steven – Physics Teacher, 2021
The use of smartphones in experimental physics is by now widely accepted and documented. PASCO scientific's Smart Cart, in combination with student-owned smartphones and free apps, has opened a new universe of low-cost experiments that have traditionally required cumbersome and expensive equipment. In this paper, we demonstrate the simplicity,…
Descriptors: Handheld Devices, Science Experiments, Physics, Computer Oriented Programs
Peer reviewed Peer reviewed
Direct linkDirect link
Kaps, A.; Starmach, F. – Physics Teacher, 2020
Smartphones and their internal sensors offer new options for an experimental access to teach physics at secondary schools and universities. Especially in the field of mechanics, a number of smartphone-based experiments are known illustrating, e.g., linear and pendulum motions as well as rotational motions using the internal MEMS accelerometer and…
Descriptors: Physics, Handheld Devices, Measurement Equipment, Mechanics (Physics)
Peer reviewed Peer reviewed
Direct linkDirect link
Monteiro, Martín; Stari, Cecilia; Cabeza, Cecilia; Martí, Arturo C. – Physics Education, 2022
The flight of a quadcopter drone, readily available as a toy, is analyzed using simple physics concepts. A smartphone with built-in accelerometer and gyroscope was attached to the drone to register the accelerations and angular velocities along the three spatial axis while the drone is taking off, landing or rotating. The vertical speed, the…
Descriptors: Physics, Science Instruction, Scientific Concepts, Concept Formation
Peer reviewed Peer reviewed
Direct linkDirect link
Wannous, Jarier; Horvath, Peter – Physics Teacher, 2023
Measuring permeability in a high school physics course has long been a hard task. However, with the advent of using smartphones in the classroom, it is not only possible but even easily done. This paper offers detailed instructions on how to measure permeability using a smartphone's magnetometer, starting with experimentally discovering the…
Descriptors: Magnets, Telecommunications, Handheld Devices, Physics
Peer reviewed Peer reviewed
Direct linkDirect link
Oskolok, Kirill V.; Monogarova, Oksana V.; Garmay, Andrey V. – Journal of Chemical Education, 2021
Technically simple and extremely cheap setups for colorimetric and fluorimetric analyses using a smartphone camera are presented. Laboratory activities on digital colorimetric and fluorimetric analyses for students of secondary and higher educational institutions are proposed, namely, photocolorimetric determination of acetylsalicylic acid in…
Descriptors: Science Equipment, Handheld Devices, High School Students, College Students
Peer reviewed Peer reviewed
Direct linkDirect link
Vogt, Patrik; Kasper, Lutz; Radler, Matthias – Physics Teacher, 2021
Various experiments on vibrating gas columns and on frequency measurements with glasses and pipes have been presented in recent years in the "iPhysicsLabs" column. The determination of the sound velocity in different gases by measuring the sound running time has also already been proposed in an earlier paper. This article now adds…
Descriptors: Science Instruction, Science Experiments, Telecommunications, Handheld Devices
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7  |  8