NotesFAQContact Us
Collection
Advanced
Search Tips
Publication Type
Journal Articles17
Reports - Descriptive17
Guides - Classroom - Teacher1
Audience
Teachers2
Location
Louisiana1
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing 1 to 15 of 17 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Noma, Hisashi; Hamura, Yasuyuki; Gosho, Masahiko; Furukawa, Toshi A. – Research Synthesis Methods, 2023
Network meta-analysis has been an essential methodology of systematic reviews for comparative effectiveness research. The restricted maximum likelihood (REML) method is one of the current standard inference methods for multivariate, contrast-based meta-analysis models, but recent studies have revealed the resultant confidence intervals of average…
Descriptors: Network Analysis, Meta Analysis, Regression (Statistics), Error of Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Jacobs, Perke; Viechtbauer, Wolfgang – Research Synthesis Methods, 2017
Meta-analyses are often used to synthesize the findings of studies examining the correlational relationship between two continuous variables. When only dichotomous measurements are available for one of the two variables, the biserial correlation coefficient can be used to estimate the product-moment correlation between the two underlying…
Descriptors: Sampling, Correlation, Meta Analysis, Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Quinn, Anne – Mathematics Teacher, 2016
While looking for an inexpensive technology package to help students in statistics classes, the author found StatKey, a free Web-based app. Not only is StatKey useful for students' year-end projects, but it is also valuable for helping students learn fundamental content such as the central limit theorem. Using StatKey, students can engage in…
Descriptors: Statistics, Computer Oriented Programs, Technology Uses in Education, Teaching Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Thissen, David – Measurement: Interdisciplinary Research and Perspectives, 2015
In "Using Learning Progressions to Design Vertical Scales that Support Coherent Inferences about Student Growth" (hereafter ULR), Briggs and Peck suggest that learning progressions could be used as the basis of vertical scales with naturally benchmarked descriptions of student proficiency. They propose and provide a single example of a…
Descriptors: Academic Achievement, Achievement Gains, Achievement Rating, Psychometrics
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Arzumanyan, George; Halcoussis, Dennis; Phillips, G. Michael – American Journal of Business Education, 2015
This paper presents the Agresti & Coull "Adjusted Wald" method for computing confidence intervals and margins of error for common proportion estimates. The presented method is easily implementable by business students and practitioners and provides more accurate estimates of proportions particularly in extreme samples and small…
Descriptors: Business Administration Education, Error of Measurement, Error Patterns, Intervals
Peer reviewed Peer reviewed
Direct linkDirect link
Adolph, Karen E.; Robinson, Scott R. – Journal of Cognition and Development, 2011
Research in developmental psychology requires sampling at different time points. Accurate depictions of developmental change provide a foundation for further empirical studies and theories about developmental mechanisms. However, overreliance on widely spaced sampling intervals in cross-sectional and longitudinal designs threatens the validity of…
Descriptors: Intervals, Children, Sampling, Developmental Psychology
Peer reviewed Peer reviewed
Direct linkDirect link
Calzada, Maria E.; Gardner, Holly – Mathematics and Computer Education, 2011
The results of a simulation conducted by a research team involving undergraduate and high school students indicate that when data is symmetric the student's "t" confidence interval for a mean is superior to the studied non-parametric bootstrap confidence intervals. When data is skewed and for sample sizes n greater than or equal to 10,…
Descriptors: Intervals, Effect Size, Simulation, Undergraduate Students
Peer reviewed Peer reviewed
Direct linkDirect link
Curran-Everett, Douglas – Advances in Physiology Education, 2009
Learning about statistics is a lot like learning about science: the learning is more meaningful if you can actively explore. This third installment of "Explorations in Statistics" investigates confidence intervals. A confidence interval is a range that we expect, with some level of confidence, to include the true value of a population parameter…
Descriptors: Statistics, Intervals, Probability, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Zientek, Linda Reichwein; Ozel, Z. Ebrar Yetkiner; Ozel, Serkan; Allen, Jeff – Career and Technical Education Research, 2012
Confidence intervals (CIs) and effect sizes are essential to encourage meta-analytic thinking and to accumulate research findings. CIs provide a range of plausible values for population parameters with a degree of confidence that the parameter is in that particular interval. CIs also give information about how precise the estimates are. Comparison…
Descriptors: Vocational Education, Effect Size, Intervals, Self Esteem
Peer reviewed Peer reviewed
Direct linkDirect link
Steyn, H. S., Jr.; Ellis, S. M. – Multivariate Behavioral Research, 2009
When two or more univariate population means are compared, the proportion of variation in the dependent variable accounted for by population group membership is eta-squared. This effect size can be generalized by using multivariate measures of association, based on the multivariate analysis of variance (MANOVA) statistics, to establish whether…
Descriptors: Effect Size, Multivariate Analysis, Computation, Monte Carlo Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Juslin, Peter; Winman, Anders; Hansson, Patrik – Psychological Review, 2007
The perspective of the naive intuitive statistician is outlined and applied to explain overconfidence when people produce intuitive confidence intervals and why this format leads to more overconfidence than other formally equivalent formats. The naive sampling model implies that people accurately describe the sample information they have but are…
Descriptors: Intervals, Sampling, Models, Intuition
Peer reviewed Peer reviewed
Direct linkDirect link
Gordon, Sheldon P.; Gordon, Florence S. – PRIMUS, 2009
The authors describe a collection of dynamic interactive simulations for teaching and learning most of the important ideas and techniques of introductory statistics and probability. The modules cover such topics as randomness, simulations of probability experiments such as coin flipping, dice rolling and general binomial experiments, a simulation…
Descriptors: Intervals, Hypothesis Testing, Statistics, Probability
Peer reviewed Peer reviewed
Direct linkDirect link
Bonnett, Douglas G. – Psychological Methods, 2008
Most psychology journals now require authors to report a sample value of effect size along with hypothesis testing results. The sample effect size value can be misleading because it contains sampling error. Authors often incorrectly interpret the sample effect size as if it were the population effect size. A simple solution to this problem is to…
Descriptors: Intervals, Hypothesis Testing, Effect Size, Sampling
Johnson, H. Dean; Evans, Marc A. – Australian Mathematics Teacher, 2008
Understanding the concept of the sampling distribution of a statistic is essential for the understanding of inferential procedures. Unfortunately, this topic proves to be a stumbling block for students in introductory statistics classes. In efforts to aid students in their understanding of this concept, alternatives to a lecture-based mode of…
Descriptors: Class Activities, Intervals, Computer Software, Sampling
Peer reviewed Peer reviewed
Direct linkDirect link
Zou, Guang Yong – Psychological Methods, 2007
Confidence intervals are widely accepted as a preferred way to present study results. They encompass significance tests and provide an estimate of the magnitude of the effect. However, comparisons of correlations still rely heavily on significance testing. The persistence of this practice is caused primarily by the lack of simple yet accurate…
Descriptors: Intervals, Effect Size, Research Methodology, Correlation
Previous Page | Next Page ยป
Pages: 1  |  2