Publication Date
| In 2026 | 0 |
| Since 2025 | 0 |
| Since 2022 (last 5 years) | 1 |
| Since 2017 (last 10 years) | 2 |
| Since 2007 (last 20 years) | 2 |
Descriptor
Author
| Chang, Daniel | 1 |
| Fancsali, Stephen E. | 1 |
| Lin, Michael Pin-Chuan | 1 |
| Marzouk, Zahia | 1 |
| Murphy, April | 1 |
| Nesbit, John C. | 1 |
| Patzak, Alexandra | 1 |
| Rakovic, Mladen | 1 |
| Ritter, Steve | 1 |
| Samadi, Donya | 1 |
| Teng, Kenny | 1 |
| More ▼ | |
Publication Type
| Reports - Descriptive | 2 |
| Journal Articles | 1 |
| Speeches/Meeting Papers | 1 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Fancsali, Stephen E.; Murphy, April; Ritter, Steve – International Educational Data Mining Society, 2022
Ten years after the announcement of the "rise of the super experiment" at Educational Data Mining 2012, challenges to implementing "internet scale" educational experiments often persist for educational technology providers, especially when they seek to test substantive instructional interventions. Studies that deploy and test…
Descriptors: Learning Analytics, Educational Technology, Barriers, Data Analysis
Winne, Philip H.; Teng, Kenny; Chang, Daniel; Lin, Michael Pin-Chuan; Marzouk, Zahia; Nesbit, John C.; Patzak, Alexandra; Rakovic, Mladen; Samadi, Donya; Vytasek, Jovita – Journal of Learning Analytics, 2019
Data used in learning analytics rarely provide strong and clear signals about how learners process content. As a result, learning as a process is not clearly described for learners or for learning scientists. GaĊĦevic, Dawson, and Siemens (2015) urged data be sought that more straightforwardly describe processes in terms of events within learning…
Descriptors: Learning Analytics, Learning Processes, Independent Study, Computer Software

Peer reviewed
