NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 11 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Baksalary, Oskar Maria; Trenkler, Gotz – International Journal of Mathematical Education in Science and Technology, 2010
By considering a general representation of proper rotation matrices, the eigenvalues and eigenspaces of those matrices are identified.
Descriptors: Matrices, Algebra, Factor Analysis, Spatial Ability
Peer reviewed Peer reviewed
Direct linkDirect link
Bentler, Peter M.; Yuan, Ke-Hai – Psychometrika, 2011
Indefinite symmetric matrices that are estimates of positive-definite population matrices occur in a variety of contexts such as correlation matrices computed from pairwise present missing data and multinormal based methods for discretized variables. This note describes a methodology for scaling selected off-diagonal rows and columns of such a…
Descriptors: Scaling, Factor Analysis, Correlation, Predictor Variables
Peer reviewed Peer reviewed
Direct linkDirect link
Krijnen, Wim P. – Psychometrika, 2006
For the confirmatory factor model a series of inequalities is given with respect to the mean square error (MSE) of three main factor score predictors. The eigenvalues of these MSE matrices are a monotonic function of the eigenvalues of the matrix gamma[subscript rho] = theta[superscript 1/2] lambda[subscript rho] 'psi[subscript rho] [superscript…
Descriptors: Factor Analysis, Scores, Matrices, Error Patterns
Peer reviewed Peer reviewed
Finkbeiner, C. T.; Tucker, L. R. – Psychometrika, 1982
The residual variance is often used as an approximation to the uniqueness in factor analysis. An upper bound approximation to the residual variance is presented for the case when the correlation matrix is singular. (Author/JKS)
Descriptors: Algorithms, Correlation, Factor Analysis, Matrices
Peer reviewed Peer reviewed
Murakami, Takashi; ten Berge, Jos M. F.; Kiers, Henk A. L. – Psychometrika, 1998
In three-mode principal components analysis, the P x Q x R core matrix "G" can be transformed to simple structure before it is interpreted. This paper shows that, when P=QR-1, G can be transformed to have nearly all the elements equal to values specified a priori. A closed-form solution for this transformation is offered. (SLD)
Descriptors: Factor Analysis, Matrices, Transformations (Mathematics)
Peer reviewed Peer reviewed
Schneeweiss, Hans – Multivariate Behavioral Research, 1997
A sufficient condition in terms of the unique variances of a common factor model is given for the results of factor analysis to come closer to those of principal components analysis. In general, vectors corresponding to loading matrices can be related to each other by a specific measure of closeness, which is illustrated. (SLD)
Descriptors: Factor Analysis, Factor Structure, Matrices
Peer reviewed Peer reviewed
Direct linkDirect link
Trenkler, Gotz – International Journal of Mathematical Education in Science & Technology, 2006
For two given vectors of the three-dimensional Euclidean space we investigate the problem of identifying all rotations that transform them into each other. For this purpose we consider three types of rotation matrices to obtain a complete characterization. Finally some attention is paid to the problem of obtaining all rotations taking two vectors…
Descriptors: Algebra, Geometric Concepts, Transformations (Mathematics), Factor Analysis
Peer reviewed Peer reviewed
Riccia, Giacomo Della; Shapiro, Alexander – Psychometrika, 1982
Some mathematical aspects of minimum trace factor analysis (MTFA) are discussed. The uniqueness of an optimal point of MTFA is proved, and necessary and sufficient conditions for any particular point to be optimal are given. The connection between MTFA and classical minimum rank factor analysis is discussed. (Author/JKS)
Descriptors: Data Analysis, Factor Analysis, Mathematical Models, Matrices
Peer reviewed Peer reviewed
Direct linkDirect link
Asparouhov, Tihomir; Muthen, Bengt – Structural Equation Modeling: A Multidisciplinary Journal, 2009
Exploratory factor analysis (EFA) is a frequently used multivariate analysis technique in statistics. Jennrich and Sampson (1966) solved a significant EFA factor loading matrix rotation problem by deriving the direct Quartimin rotation. Jennrich was also the first to develop standard errors for rotated solutions, although these have still not made…
Descriptors: Structural Equation Models, Testing, Factor Analysis, Research Methodology
Peer reviewed Peer reviewed
Dolan, Conor; Bechger, Timo; Molenaar, Peter – Structural Equation Modeling, 1999
Considers models incorporating principal components from the perspectives of structural-equation modeling. These models include the following: (1) the principal-component analysis of patterned matrices; (2) multiple analysis of variance based on principal components; and (3) multigroup principal-components analysis. Discusses fitting these models…
Descriptors: Computer Software, Factor Analysis, Goodness of Fit, Matrices
Peer reviewed Peer reviewed
Werts, C. E.; And Others – Multivariate Behavioral Research, 1979
Procedures for simultaneous confirmatory factor analysis in several populations are useful in a variety of problems. This is demonstrated with examples involving missing data, comparison of part correlations between groups, testing the equality of regression weights between groups with multiple indicators of each variable, and the formulation of…
Descriptors: Analysis of Covariance, Comparative Analysis, Computer Programs, Correlation