NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 9 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Cheung, Mike W.-L. – Structural Equation Modeling: A Multidisciplinary Journal, 2013
Structural equation modeling (SEM) is now a generic modeling framework for many multivariate techniques applied in the social and behavioral sciences. Many statistical models can be considered either as special cases of SEM or as part of the latent variable modeling framework. One popular extension is the use of SEM to conduct linear mixed-effects…
Descriptors: Structural Equation Models, Maximum Likelihood Statistics, Guidelines, Multivariate Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Savalei, Victoria; Rhemtulla, Mijke – Structural Equation Modeling: A Multidisciplinary Journal, 2012
Fraction of missing information [lambda][subscript j] is a useful measure of the impact of missing data on the quality of estimation of a particular parameter. This measure can be computed for all parameters in the model, and it communicates the relative loss of efficiency in the estimation of a particular parameter due to missing data. It has…
Descriptors: Computation, Structural Equation Models, Maximum Likelihood Statistics, Data
Peer reviewed Peer reviewed
Direct linkDirect link
van Smeden, Maarten; Hessen, David J. – Structural Equation Modeling: A Multidisciplinary Journal, 2013
In this article, a 2-way multigroup common factor model (MG-CFM) is presented. The MG-CFM can be used to estimate interaction effects between 2 grouping variables on 1 or more hypothesized latent variables. For testing the significance of such interactions, a likelihood ratio test is presented. In a simulation study, the robustness of the…
Descriptors: Multivariate Analysis, Robustness (Statistics), Sample Size, Statistical Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Bryant, Fred B.; Satorra, Albert – Structural Equation Modeling: A Multidisciplinary Journal, 2012
We highlight critical conceptual and statistical issues and how to resolve them in conducting Satorra-Bentler (SB) scaled difference chi-square tests. Concerning the original (Satorra & Bentler, 2001) and new (Satorra & Bentler, 2010) scaled difference tests, a fundamental difference exists in how to compute properly a model's scaling correction…
Descriptors: Statistical Analysis, Structural Equation Models, Goodness of Fit, Least Squares Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Savalei, Victoria; Bentler, Peter M. – Structural Equation Modeling: A Multidisciplinary Journal, 2009
A well-known ad-hoc approach to conducting structural equation modeling with missing data is to obtain a saturated maximum likelihood (ML) estimate of the population covariance matrix and then to use this estimate in the complete data ML fitting function to obtain parameter estimates. This 2-stage (TS) approach is appealing because it minimizes a…
Descriptors: Structural Equation Models, Data, Computation, Maximum Likelihood Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Lee, In Heok – Career and Technical Education Research, 2012
Researchers in career and technical education often ignore more effective ways of reporting and treating missing data and instead implement traditional, but ineffective, missing data methods (Gemici, Rojewski, & Lee, 2012). The recent methodological, and even the non-methodological, literature has increasingly emphasized the importance of…
Descriptors: Vocational Education, Data Collection, Maximum Likelihood Statistics, Educational Research
Peer reviewed Peer reviewed
Direct linkDirect link
Ryu, Ehri; West, Stephen G. – Structural Equation Modeling: A Multidisciplinary Journal, 2009
In multilevel structural equation modeling, the "standard" approach to evaluating the goodness of model fit has a potential limitation in detecting the lack of fit at the higher level. Level-specific model fit evaluation can address this limitation and is more informative in locating the source of lack of model fit. We proposed level-specific test…
Descriptors: Structural Equation Models, Evaluation Methods, Goodness of Fit, Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Song, Xin-Yuan; Lee, Sik-Yum – Multivariate Behavioral Research, 2005
In this article, a maximum likelihood approach is developed to analyze structural equation models with dichotomous variables that are common in behavioral, psychological and social research. To assess nonlinear causal effects among the latent variables, the structural equation in the model is defined by a nonlinear function. The basic idea of the…
Descriptors: Structural Equation Models, Simulation, Computation, Error of Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Kim, Heeja; Rojewski, Jay W. – Journal of Vocational Education Research, 2002
This paper describes structural equation modeling (SEM) and possibilities for using SEM to address problems specific to workforce education and career development. A sample of adolescents identified as work-bound (i.e., transition directly from secondary school to work) from the National Education Longitudinal Study 1988-1996 database (NELS:…
Descriptors: Structural Equation Models, Career Education, Career Development, Technical Education