NotesFAQContact Us
Collection
Advanced
Search Tips
Showing 1 to 15 of 18 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Jiro Kondo; Shota Nakamura – Journal of Chemical Education, 2023
The use of molecular models in chemistry and biochemistry classes is very effective in helping students understand covalent bonds and the chemical structure of molecules. However, conventional molecular models cannot represent intermolecular interactions such as hydrogen bonds and electrostatic interactions. Herein, we describe 3D printed…
Descriptors: Chemistry, Molecular Structure, Scientific Concepts, Biochemistry
Peer reviewed Peer reviewed
Direct linkDirect link
Mihasan, Marius – Biochemistry and Molecular Biology Education, 2021
The structure and function of biomolecules relationship is the hallmark of biochemistry, molecular biology, and life sciences in general. Physical models of macromolecules give students the possibility to manipulate these structures in three dimensions, developing a sense of spatiality and a better understanding of key aspects such as atom size…
Descriptors: Printing, Computer Peripherals, Biochemistry, Molecular Biology
Peer reviewed Peer reviewed
Direct linkDirect link
Bernard, Pawel; Mendez, James D. – Biochemistry and Molecular Biology Education, 2020
Development of three-dimensional (3D) printing technology has started a new chapter for in-classroom modeling of chemical molecules. The technology provides the opportunity to design and produce various types of personalized models. However, using classical 3D printers is time consuming, and it is hard to involve students in the modeling process…
Descriptors: Computer Peripherals, Printing, Freehand Drawing, Geometry
Peer reviewed Peer reviewed
Direct linkDirect link
Michelle Garcia; Frances A. O'Leary; Daniel J. O'Leary – Journal of Chemical Education, 2023
This report outlines an approach for preparing 5-color 3D printed plastic models of molecular orbitals and electron density surfaces using a hobby-grade 3D printer. Instructions are provided for preparing 3D orbital and electron density surface (EDS) models using solid or mesh representations in ground state and transition state structures. We…
Descriptors: Science Education, Hands on Science, Computer Peripherals, Printing
Peer reviewed Peer reviewed
Direct linkDirect link
Niece, Brian K. – Journal of Chemical Education, 2019
Models were prepared by 3D printing that can be used to demonstrate the operations required for the study of molecular symmetry. The models were designed to emphasize the order and locations of rotation axes and to clearly illustrate the more abstract reflection and improper rotation axes. The models were well-received by students in a course on…
Descriptors: Molecular Structure, Computer Peripherals, Science Instruction, Teaching Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Brannon, Jacob P.; Ramirez, Isaac; Williams, DaShawn; Barding, Gregory A., Jr.; Liu, Yan; McCulloch, Kathryn M.; Chandrasekaran, Perumalreddy; Stieber, S. Chantal E. – Journal of Chemical Education, 2020
Experimental methods for determining 3-D atomic structures, such as crystallography, are rarely taught in the undergraduate curriculum, yet are considered to be the norm for 3-D structure determination in a research setting. Although a fully physical understanding of crystallography takes years of practice, practical applications and basic…
Descriptors: Science Instruction, College Science, Inorganic Chemistry, Molecular Structure
Peer reviewed Peer reviewed
Direct linkDirect link
Peterson, Celeste N.; Tavana, Sara Z.; Akinleye, Olukemi P.; Johnson, Walter H.; Berkmen, Melanie B. – Biochemistry and Molecular Biology Education, 2020
Biology and biochemistry students must learn to visualize and comprehend the complex three-dimensional (3D) structures of macromolecules such as proteins or DNA. However, most tools available for teaching biomolecular structures typically operate in two dimensions. Here, we present protocols and pedagogical approaches for using immersive augmented…
Descriptors: Teaching Methods, Molecular Structure, Computer Software, Biochemistry
Peer reviewed Peer reviewed
Direct linkDirect link
Savchenkov, Anton V. – Journal of Chemical Education, 2020
Sets of models of molecules (which are of interest for teaching molecular structure, symmetry, and related topics in many chemical disciplines) were prepared and made available either for self-directed 3D-printing or through the 3D-printing company Shapeways providing 3D-printing as a service. This allows teachers to save time on searching for…
Descriptors: Computer Peripherals, Printing, Hands on Science, Manipulative Materials
Peer reviewed Peer reviewed
Direct linkDirect link
Singhal, Ishu; Balaji, B. S. – Journal of Chemical Education, 2020
An open-source repository of basic building block models design files for writing chemical formulas, equations, and ionic states are provided. Writing chemical symbols, molecules, and ions in their correct oxidation state or valency in chemical equations is an essential and integral part of learning. For a visually impaired student, it is very…
Descriptors: Chemistry, Science Education, Nuclear Physics, Molecular Structure
Peer reviewed Peer reviewed
Direct linkDirect link
Lee, Ning Yuan; Tucker-Kellogg, Greg – Biochemistry and Molecular Biology Education, 2020
Understanding macromolecular structures is essential for biology education. Augmented reality (AR) applications have shown promise in science, technology, engineering, and mathematics (STEM) education, but are not widely used for protein visualization. While there are some tools for AR protein visualization, none of them are accessible to the…
Descriptors: Visualization, Molecular Structure, Computer Simulation, STEM Education
Peer reviewed Peer reviewed
Direct linkDirect link
Jones, Oliver A. H.; Spencer, Michelle J. S. – Journal of Chemical Education, 2018
Using tangible models to help students visualize chemical structures in three dimensions has been a mainstay of chemistry education for many years. Conventional chemistry modeling kits are, however, limited in the types and accuracy of the molecules, bonds and structures they can be used to build. The recent development of 3D printing technology…
Descriptors: Computer Peripherals, Printing, Chemistry, Molecular Structure
Peer reviewed Peer reviewed
Direct linkDirect link
Paukstelis, Paul J. – Journal of Chemical Education, 2018
The increased availability of noncommercial 3D printers has provided instructors and students improved access to printing technology. However, printing complex ball-and-stick molecular structures faces distinct challenges, including the need for support structures that increase with molecular complexity. MolPrint3D is a software add-on for the…
Descriptors: Chemistry, Science Instruction, Molecular Structure, Hands on Science
Peer reviewed Peer reviewed
Direct linkDirect link
de Cataldo, Riccardo; Griffith, Kaitlyn M.; Fogarty, Keir H. – Journal of Chemical Education, 2018
Introductory chemistry students encounter the concept of hybrid orbitals as a transition from atomic orbitals to molecular bonding. The principal purpose of learning hybridization in the undergraduate curriculum is to impart an understanding of the origins of molecular bonding and geometry. Physical models of both individual hybrid orbitals and…
Descriptors: Introductory Courses, Science Instruction, Visualization, Molecular Structure
Peer reviewed Peer reviewed
Direct linkDirect link
Woo, Yura; Ju, Young-Gu – Physics Education, 2019
In this paper, we present the details of the development of a smartphone spectrometer for education using a 3D printer and characterized the performance by comparison with a paper craft spectrometer. The optical design and the narrow slit used in the build resulted in the formation of accurate images of the slit on the image sensor leading to a…
Descriptors: Telecommunications, Handheld Devices, Educational Technology, Technology Uses in Education
Peer reviewed Peer reviewed
Direct linkDirect link
Davis, Eric J.; Jones, Michael; Thiel, D. Alex; Pauls, Steve – Journal of Chemical Education, 2018
Additive manufacturing (3D printing) is a technology with near-unlimited potential for the chemical educator. However, its adoption into higher education has been limited by the dual requirements of expertise in 3D printing and 3D computer-aided design (CAD). Thus, its reported utilization in the chemistry curriculum has been within the creation…
Descriptors: Chemistry, Science Education, Open Source Technology, Computer Peripherals
Previous Page | Next Page ยป
Pages: 1  |  2