NotesFAQContact Us
Collection
Advanced
Search Tips
Publication Type
Reports - Descriptive31
Journal Articles25
Speeches/Meeting Papers1
Laws, Policies, & Programs
Assessments and Surveys
Early Childhood Longitudinal…2
What Works Clearinghouse Rating
Showing 1 to 15 of 31 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
James Ohisei Uanhoro – Structural Equation Modeling: A Multidisciplinary Journal, 2024
We present a method for Bayesian structural equation modeling of sample correlation matrices as correlation structures. The method transforms the sample correlation matrix to an unbounded vector using the matrix logarithm function. Bayesian inference about the unbounded vector is performed assuming a multivariate-normal likelihood, with a mean…
Descriptors: Bayesian Statistics, Structural Equation Models, Correlation, Monte Carlo Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Maeda, Hotaka; Zhang, Bo – Journal of Educational Measurement, 2020
When a response pattern does not fit a selected measurement model, one may resort to robust ability estimation. Two popular robust methods are biweight and Huber weight. So far, research on these methods has been quite limited. This article proposes the maximum a posteriori biweight (BMAP) and Huber weight (HMAP) estimation methods. These methods…
Descriptors: Bayesian Statistics, Robustness (Statistics), Computation, Monte Carlo Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Shi, Dingjing; Tong, Xin – Sociological Methods & Research, 2022
This study proposes a two-stage causal modeling with instrumental variables to mitigate selection bias, provide correct standard error estimates, and address nonnormal and missing data issues simultaneously. Bayesian methods are used for model estimation. Robust methods with Student's "t" distributions are used to account for nonnormal…
Descriptors: Bayesian Statistics, Monte Carlo Methods, Computer Software, Causal Models
Peer reviewed Peer reviewed
Direct linkDirect link
Gangur, Mikuláš; Svoboda, Milan – Teaching Statistics: An International Journal for Teachers, 2018
This contribution shows a simple implementation of Monte Carlo simulation method when presenting Bayes' rule. The implementation is carried out in the environment of Microsoft Excel spreadsheets by means of a generator of random numbers. The empiric results gained by simulation serve to confirm the correctness of the chosen procedures in…
Descriptors: Simulation, Bayesian Statistics, Monte Carlo Methods, Spreadsheets
Peer reviewed Peer reviewed
Direct linkDirect link
Kelter, Riko – Measurement: Interdisciplinary Research and Perspectives, 2020
Survival analysis is an important analytic method in the social and medical sciences. Also known under the name time-to-event analysis, this method provides parameter estimation and model fitting commonly conducted via maximum-likelihood. Bayesian survival analysis offers multiple advantages over the frequentist approach for measurement…
Descriptors: Bayesian Statistics, Maximum Likelihood Statistics, Programming Languages, Statistical Inference
Peer reviewed Peer reviewed
Direct linkDirect link
Albert, Jim; Hu, Jingchen – Journal of Statistics Education, 2020
Bayesian statistics has gained great momentum since the computational developments of the 1990s. Gradually, advances in Bayesian methodology and software have made Bayesian techniques much more accessible to applied statisticians and, in turn, have potentially transformed Bayesian education at the undergraduate level. This article provides an…
Descriptors: Bayesian Statistics, Computation, Statistics Education, Undergraduate Students
Peer reviewed Peer reviewed
Direct linkDirect link
Levy, Roy – Educational Measurement: Issues and Practice, 2020
In this digital ITEMS module, Dr. Roy Levy describes Bayesian approaches to psychometric modeling. He discusses how Bayesian inference is a mechanism for reasoning in a probability-modeling framework and is well-suited to core problems in educational measurement: reasoning from student performances on an assessment to make inferences about their…
Descriptors: Bayesian Statistics, Psychometrics, Item Response Theory, Statistical Inference
Peer reviewed Peer reviewed
Direct linkDirect link
Hoegh, Andrew – Journal of Statistics Education, 2020
While computing has become an important part of the statistics field, course offerings are still influenced by a legacy of mathematically centric thinking. Due to this legacy, Bayesian ideas are not required for undergraduate degrees and have largely been taught at the graduate level; however, with recent advances in software and emphasis on…
Descriptors: Bayesian Statistics, Statistics Education, Introductory Courses, Majors (Students)
Peer reviewed Peer reviewed
Direct linkDirect link
Zhan, Peida; Jiao, Hong; Man, Kaiwen; Wang, Lijun – Journal of Educational and Behavioral Statistics, 2019
In this article, we systematically introduce the just another Gibbs sampler (JAGS) software program to fit common Bayesian cognitive diagnosis models (CDMs) including the deterministic inputs, noisy "and" gate model; the deterministic inputs, noisy "or" gate model; the linear logistic model; the reduced reparameterized unified…
Descriptors: Bayesian Statistics, Computer Software, Models, Test Items
Peer reviewed Peer reviewed
Direct linkDirect link
Hu, Jingchen – Journal of Statistics Education, 2020
We propose a semester-long Bayesian statistics course for undergraduate students with calculus and probability background. We cultivate students' Bayesian thinking with Bayesian methods applied to real data problems. We leverage modern Bayesian computing techniques not only for implementing Bayesian methods, but also to deepen students'…
Descriptors: Bayesian Statistics, Statistics Education, Undergraduate Students, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
McNeish, Daniel – Educational and Psychological Measurement, 2017
In behavioral sciences broadly, estimating growth models with Bayesian methods is becoming increasingly common, especially to combat small samples common with longitudinal data. Although Mplus is becoming an increasingly common program for applied research employing Bayesian methods, the limited selection of prior distributions for the elements of…
Descriptors: Models, Bayesian Statistics, Statistical Analysis, Computer Software
Carpenter, Bob; Gelman, Andrew; Hoffman, Matthew D.; Lee, Daniel; Goodrich, Ben; Betancourt, Michael; Brubaker, Marcus A.; Guo, Jiqiang; Li, Peter; Riddell, Allen – Grantee Submission, 2017
Stan is a probabilistic programming language for specifying statistical models. A Stan program imperatively defines a log probability function over parameters conditioned on specified data and constants. As of version 2.14.0, Stan provides full Bayesian inference for continuous-variable models through Markov chain Monte Carlo methods such as the…
Descriptors: Programming Languages, Probability, Bayesian Statistics, Monte Carlo Methods
Zhang, Zhiyong – Grantee Submission, 2016
Growth curve models are widely used in social and behavioral sciences. However, typical growth curve models often assume that the errors are normally distributed although non-normal data may be even more common than normal data. In order to avoid possible statistical inference problems in blindly assuming normality, a general Bayesian framework is…
Descriptors: Bayesian Statistics, Models, Statistical Distributions, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Ames, Allison J.; Samonte, Kelli – Educational and Psychological Measurement, 2015
Interest in using Bayesian methods for estimating item response theory models has grown at a remarkable rate in recent years. This attentiveness to Bayesian estimation has also inspired a growth in available software such as WinBUGS, R packages, BMIRT, MPLUS, and SAS PROC MCMC. This article intends to provide an accessible overview of Bayesian…
Descriptors: Item Response Theory, Bayesian Statistics, Computation, Computer Software
Peer reviewed Peer reviewed
Direct linkDirect link
Stewart, Wayne; Stewart, Sepideh – PRIMUS, 2014
For many scientists, researchers and students Markov chain Monte Carlo (MCMC) simulation is an important and necessary tool to perform Bayesian analyses. The simulation is often presented as a mathematical algorithm and then translated into an appropriate computer program. However, this can result in overlooking the fundamental and deeper…
Descriptors: Markov Processes, Monte Carlo Methods, College Mathematics, Mathematics Instruction
Previous Page | Next Page »
Pages: 1  |  2  |  3