Publication Date
| In 2026 | 0 |
| Since 2025 | 2 |
| Since 2022 (last 5 years) | 11 |
| Since 2017 (last 10 years) | 32 |
| Since 2007 (last 20 years) | 70 |
Descriptor
Source
Author
| Deek, Fadi P. | 3 |
| Aleven, Vincent | 2 |
| Friedman, Robert S. | 2 |
| Siegle, Del | 2 |
| Weber, Gerhard | 2 |
| Abramovich, Sergei | 1 |
| Aguilera-Venegas, Gabriel | 1 |
| Akcaoglu, Mete | 1 |
| Allan, V. H. | 1 |
| Amenda N. Chow | 1 |
| Armoni, Michal | 1 |
| More ▼ | |
Publication Type
Education Level
Audience
| Teachers | 5 |
| Practitioners | 2 |
Location
| Australia | 5 |
| Canada | 1 |
| Colombia | 1 |
| Georgia | 1 |
| Germany | 1 |
| Hong Kong | 1 |
| Hungary | 1 |
| Israel | 1 |
| Michigan | 1 |
| Pennsylvania | 1 |
| Portugal | 1 |
| More ▼ | |
Laws, Policies, & Programs
| No Child Left Behind Act 2001 | 1 |
Assessments and Surveys
What Works Clearinghouse Rating
Morten Munthe; Margrethe Naalsund – Digital Experiences in Mathematics Education, 2024
The growing use of programming in mathematics classrooms presents a challenge linked to implementation in general and task design in particular. This article presents design ideas for mathematical problems incorporating programming in which the focus remains mainly on learning mathematics and less on learning programming. The article starts by…
Descriptors: Programming, Mathematics Instruction, Task Analysis, Design
Hsiao-Ping Hsu – TechTrends: Linking Research and Practice to Improve Learning, 2025
The advancement of large language model-based generative artificial intelligence (LLM-based GenAI) has sparked significant interest in its potential to address challenges in computational thinking (CT) education. CT, a critical problem-solving approach in the digital age, encompasses elements such as abstraction, iteration, and generalisation.…
Descriptors: Programming, Prompting, Computation, Thinking Skills
Amenda N. Chow; Peter D. Harrington; Fok-Shuen Leung – Teaching Mathematics and Its Applications, 2024
Physical experiments in classrooms have many benefits for student learning, including increased student interest, participation and knowledge retention. While experiments are common in engineering and physics classes, they are seldom used in first-year calculus, where the focus is on solving problems analytically and, occasionally, numerically. In…
Descriptors: Mathematics Instruction, Calculus, Computer Software, Programming
Pelánek, Radek; Effenberger, Tomáš – Computer Science Education, 2022
Background and Context: Block-based programming is a popular approach to teaching introductory programming. Block-based programming often works in the context of microworlds, where students solve specific puzzles. It is used, for example, within the Hour of Code event, which targets millions of students. Objective: To identify design guidelines…
Descriptors: Programming, Computer Science Education, Puzzles, Problem Solving
Dragan Zlatkovic´; Miljana Ðordevic´ Zlatkovic´; Niko Radulovic´ – Journal of Chemical Education, 2023
Herein, we present a program implemented in Python that utilizes a simple complete-search algorithm to determine the geometry of a lanthanide-substrate (LS) complex. The program serves as a practical project in a programming course for chemistry students, specifically aimed at illustrating fundamental concepts such as decision-making, repetition,…
Descriptors: Programming, Problem Solving, Chemistry, Science Education
Loïs Vanhée; Karin Danielsson; Lena Enqvist; Kalle Grill; Melania Borit – European Journal of Education, 2024
Whereas hackathons are widespread within and outside academia and have been argued to be a valid pedagogical method for teaching interdisciplinarity, no detailed frameworks or methods are available for conceptualizing and organizing educational hackathons, i.e., hackathons dedicated to best achieving pedagogic objectives. This paper is dedicated…
Descriptors: Interdisciplinary Approach, Learning Activities, Programming, Computer Security
Steven Higbee; Sharon Miller; Karen Alfrey – Biomedical Engineering Education, 2025
Challenge: The Hodgkin-Huxley membrane conductance model has been featured in biomedical engineering (BME) curricula for decades. A typical BME assignment might require students to apply the relevant equations and parameters to model the generation of action potentials; however, there is opportunity for students to build and explore both…
Descriptors: Scientific Concepts, Biomedicine, Engineering Education, Models
Tavares, Paula Correia; Gomes, Elsa Ferreira; Henriques, Pedro Rangel; Vieira, Diogo Manuel – Open Education Studies, 2022
Computer Programming Learners usually fail to get approved in introductory courses because solving problems using computers is a complex task. The most important reason for that failure is concerned with motivation; motivation strongly impacts on the learning process. In this paper we discuss how techniques like program animation, and automatic…
Descriptors: Learner Engagement, Programming, Computer Science Education, Problem Solving
Stohlmann, Micah; Kim, Young Rae – Australian Mathematics Education Journal, 2020
Games are an everyday part of most students' lives. Games engage students and provide opportunities to foster perseverance in problem solving. When implemented in the mathematics classroom, game-based learning can have similar positive benefits. Students can enjoy mathematics and develop important life skills that will help them in their current…
Descriptors: Game Based Learning, Robotics, Educational Games, Mathematics Instruction
Menon, Pratibha – Journal of Information Systems Education, 2023
This paper introduces a teaching process to develop students' problem-solving and programming efficacy in an introductory computer programming course. The proposed teaching practice provides step-by-step guidelines on using worked-out examples of code to demonstrate the applications of programming concepts. These coding demonstrations explicitly…
Descriptors: Introductory Courses, Programming, Computer Science Education, Feedback (Response)
Basuhail, Abdullah Ahmad – Canadian Journal of Learning and Technology, 2020
This paper presents an approach to implement learning objects for teaching and learning problem-solving techniques based on computer programming. The demonstrated approach exploits computer-based interactive animations and computer graphics. The main feature of this approach is its simplicity for exploring the concepts and structures of the…
Descriptors: Resource Units, Teaching Methods, Programming, Problem Solving
Remshagen, Anja; Huett, Kim C. – TechTrends: Linking Research and Practice to Improve Learning, 2023
As schools endeavor to provide all students with access to computational thinking and computer science, the hackathon emerges as a competitive and high-energy event that uses authentic problems to motivate learners to engage in the domain of computing. This article presents the design case of a hackathon for teenagers as enacted over five…
Descriptors: Adolescents, Computer Software, Group Activities, Problem Solving
Siegle, Del – Gifted Child Today, 2020
The Thunkable online platform is an easy-to-use resource for creating apps for mobile devices. Computational thinking is at the heart of problem solving in computer science, and research suggests students' computational thinking improves when they use simple block coding systems similar to the format used for Thunkable.
Descriptors: Gifted Education, Academically Gifted, Technology Uses in Education, Computer Oriented Programs
Güney, Zafer – International Journal of Progressive Education, 2019
The need for methods, techniques and approaches that we can develop high-level thinking skills in important activities increases day by day in order to achieve effective use of technology and change in information and communication technologies. In particular, the diversity, complexity of technical skills and to gain technical skills required to…
Descriptors: Instructional Design, Models, Programming, Thinking Skills
Sbaraglia, Marco; Lodi, Michael; Martini, Simone – Informatics in Education, 2021
Introductory programming courses (CS1) are difficult for novices. Inspired by "Problem solving followed by instruction" and "Productive Failure" approaches, we define an original "necessity-driven" learning design. Students are put in an apparently well-known situation, but this time they miss an essential ingredient…
Descriptors: Programming, Introductory Courses, Computer Science Education, Programming Languages

Peer reviewed
Direct link
