Publication Date
In 2025 | 0 |
Since 2024 | 1 |
Since 2021 (last 5 years) | 3 |
Since 2016 (last 10 years) | 12 |
Since 2006 (last 20 years) | 54 |
Descriptor
Science Curriculum | 228 |
Engineering Education | 186 |
Higher Education | 148 |
Science Education | 137 |
College Science | 135 |
Science Instruction | 90 |
Course Descriptions | 69 |
Engineering | 56 |
Chemical Engineering | 48 |
Foreign Countries | 41 |
Course Content | 40 |
More ▼ |
Source
Author
Publication Type
Education Level
Audience
Practitioners | 78 |
Teachers | 31 |
Policymakers | 22 |
Researchers | 14 |
Administrators | 9 |
Students | 3 |
Location
United Kingdom | 6 |
United Kingdom (Great Britain) | 5 |
California | 3 |
Canada | 3 |
Finland | 3 |
Israel | 3 |
Germany | 2 |
India | 2 |
Japan | 2 |
Massachusetts | 2 |
Ohio | 2 |
More ▼ |
Laws, Policies, & Programs
Assessments and Surveys
National Assessment of… | 1 |
Program for International… | 1 |
What Works Clearinghouse Rating
Nature of Engineering: A Cognitive and Epistemic Account with Implications for Engineering Education
Miri Barak; Tamar Ginzburg; Sibel Erduran – Science & Education, 2024
Engineering education has slowly been making its way into schools with the aim of promoting engineering literacy, which is central to learning and working in a technology-oriented society. Educators and policy makers advocate the need for developing students' understanding of the nature of engineering (NOE); yet, there is an ongoing debate on the…
Descriptors: Engineering Education, Science Curriculum, Integrated Curriculum, Educational Research
Radloff, Jeffrey; Capobianco, Brenda; Weller, Jessica; Rebello, Sanjay; Eichinger, David; Erk, Kendra – Journal of College Science Teaching, 2022
Recent science reform advocates for the inclusion of engineering design to teach science and represents a shift to so-called three-dimensional (3D) learning. This shift often requires science instructors to adapt their current curriculum to integrate 3D learning. To support this shift, the current study illustrates the collaborative development…
Descriptors: Alignment (Education), Science Curriculum, College Curriculum, Teaching Methods
Binder, P.-M.; Collins, Topaz P.; Blacksmith, Kristal – Physics Teacher, 2020
The purpose of this paper is to describe a three-year limited-run offer of an energy science certificate in the University of Hawaii at Hilo campus, along with lessons learned that can be of use to other institutions considering comparable programs. Energy science is a loosely defined discipline that traditionally straddles physics and mechanical,…
Descriptors: Physics, Energy, Science Instruction, Science Curriculum
Lesseig, Kristin; Slavit, David; Nelson, Tamara Holmlund – Middle School Journal, 2017
Given the current emphasis on science, technology, engineering, and math (STEM) education and its key attributes, middle school is an optimal time to implement STEM-based curricula. However, the interdisciplinary and open-ended nature of STEM projects often makes implementation difficult. In this article, we describe a professional development…
Descriptors: STEM Education, Middle School Students, Middle School Teachers, Interdisciplinary Approach
Osborne, Jonathan – School Science Review, 2018
The USA has had a new set of science standards entitled the Next Generation Science Standards since 2014. While their adoption has not been ubiquitous, as curriculum choices are a state rather than a federal decision, they have been adopted by 19 states (plus the District of Columbia). Moreover, they have been influential on the curriculum choices…
Descriptors: Science Education, Academic Standards, Science Curriculum, Educational Innovation
Sisk-Hilton, Stephanie; Ferner, Sarah Davies – Science and Children, 2022
The inclusion of engineering in the Next Generation Science Standards (NGSS) as a key component of K-12 science learning has provided both opportunities and challenges for elementary teachers. One challenge is integrating the design thinking processes that undergird engineering with core science concepts and current issues facing scientists and…
Descriptors: Engineering Education, Science Education, National Standards, Elementary School Teachers
Kockmann, Norbert; Lutze, Philip; Gorak, Andrzej – Universal Journal of Educational Research, 2016
Chemical processing industry is progressively focusing their research activities and product placements in the areas of Grand Challenges (or Global Megatrends) such as mobility, energy, communication, or health care and food. Innovation in all these fields requires solving high complex problems, rapid product development as well as dealing with…
Descriptors: Foreign Countries, Engineering, Chemistry, Manufacturing Industry
Krajcik, Joe – Science and Children, 2015
Science teaching and learning in the United States are at a pivotal point. "A Framework for K-12 Science Education" (NRC 2012b) and the "Next Generation Science Standards" ("NGSS"; NGSS Lead States 2013) shift science educators' focus from simply teaching science ideas to helping students figure out phenomena and…
Descriptors: Science Instruction, Science Education, Science Curriculum, Teaching Methods
Boesdorfer, Sarah; Greenhalgh, Scott – Science Teacher, 2014
The "Next Generation Science Standards" (NGSS Lead States 2013) urge science teachers to include engineering practices and ideas in their already full science curriculum, but many teachers do not know where to start. Only 7% of high school science teachers report feeling "very well prepared" to teach engineering. The…
Descriptors: Science Curriculum, Science Instruction, Science Teachers, Engineering
Macalalag, Augusto, Jr.; Johnson, Barbara; Johnson, Joseph – Science and Children, 2018
Engaging students in designing, testing, and revising engineering models using mathematical representation of data from scientific investigations helps them embody the science and engineering practices highlighted in the "Next Generation Science Standards" (NGSS Lead States, 2013). The practices of modeling, conducting failure analysis,…
Descriptors: STEM Education, Standards, Design, Engineering Education
Hathcock, Stephanie J. – Gifted Child Today, 2018
The Parallel Curriculum Model (PCM) lends itself to considering curriculum development from different angles. It begins with a solid Core Curriculum and can then be extended through the Curriculum of Connections, Practice, and Identity. This article showcases a way of thinking about the creation of a PCM unit by providing examples from an…
Descriptors: Interdisciplinary Approach, Science Instruction, Science Curriculum, Core Curriculum
Schnittka, Christine; Richards, Larry – Science Teacher, 2016
Solar energy is clean, free, and abundant worldwide. The challenge, however, is to convert it to useful forms that can reduce our reliance on fossil fuels. This article presents an activity for physical science classes in which students learn firsthand how solar energy can be used to produce electricity specifically for transportation. The…
Descriptors: Energy, Fuels, Science Instruction, Teaching Methods
Lo, Roger C.; Bhatia, Hina; Venkatraman, Rahul; Jang, Larry K. – Chemical Engineering Education, 2015
Microfluidics involves the study of the behavior of fluids at microscale, fluid manipulations, and the design of the devices that can effectively perform such manipulations. We are developing two new elective courses to include microfluidics in our curriculum at CSULB. Herein, we present the results of the first course, Microfabrication and…
Descriptors: Chemical Engineering, Science Instruction, College Science, Science Curriculum
National Academies Press, 2012
The aim of this report is to encourage enhanced richness and relevance of the undergraduate engineering education experience, and thus produce better-prepared and more globally competitive graduates, by providing practical guidance for incorporating real world experience in US engineering programs. The report, a collaborative effort of the…
Descriptors: Engineering, Engineering Technology, Engineering Education, Undergraduate Study
Gonczi, Amanda L.; Bergman, Brenda G.; Huntoon, Jackie; Allen, Robin; McIntyre, Barb; Turner, Sheri; Davis, Jen; Handler, Rob – Science Activities: Classroom Projects and Curriculum Ideas, 2017
Decision matrices are valuable engineering tools. They allow engineers to objectively examine solution options. Decision matrices can be incorporated in K-12 classrooms to support authentic engineering instruction. In this article we provide examples of how decision matrices have been incorporated into 6th and 7th grade classrooms as part of an…
Descriptors: Decision Making, Matrices, Teaching Methods, Middle School Students