NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 11 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Perea Martins, J. E. M. – Physics Education, 2019
This work proposes simple experiments to introduce some fundamental concepts of the measurement area. It associates theory and practice through a strategy where the students create a real temperature data set with an Arduino board and three LM35DZ sensors and later use mathematical software to identify theoretical concepts as measurement accuracy…
Descriptors: Scientific Concepts, Accuracy, Climate, Science Experiments
Peer reviewed Peer reviewed
Direct linkDirect link
Seixas, T. M.; da Silva, M. A. Salgueiro – Physics Teacher, 2015
When conducting experiments involving the measurement of physically related quantities, choosing an appropriate spacing for the experimental independent variable is a crucial procedure whose consequences may go beyond data graphical visualization. This is particularly true if the measured quantities are nonlinearly related and experimental errors…
Descriptors: Measurement, Data, Error of Measurement, Intervals
Peer reviewed Peer reviewed
Direct linkDirect link
McCall, Richard P. – Physics Teacher, 2012
A recent article in "The Physics Teacher" describes a method for analyzing a systematic error in a Boyle's law laboratory activity. Systematic errors are important to consider in physics labs because they tend to bias the results of measurements. There are numerous laboratory examples and resources that discuss this common source of error.
Descriptors: Science Activities, Physics, Laboratories, Science Experiments
Peer reviewed Peer reviewed
Direct linkDirect link
McCall, Richard P. – Physics Teacher, 2013
Systematic errors can cause measurements to deviate from the actual value of the quantity being measured. Faulty equipment (such as a meterstick that is not marked correctly), inaccurate calibration of measuring devices (such as a scale to measure mass that has not been properly zeroed), and improper use of equipment by the experimenter (such as…
Descriptors: Physics, Science Instruction, Laboratory Equipment, Science Laboratories
Peer reviewed Peer reviewed
Direct linkDirect link
Kim, Hanna – Science Activities: Classroom Projects and Curriculum Ideas, 2008
Testing the pH of various liquids is one of the most popular activities in 5th- through 8th-grade classrooms. The author presents an extensive pH-testing lesson based on a 5E (engagement, exploration, explanation, extension, and evaluation) teaching model. The activity provides students with the opportunity to learn about pH and how it relates to…
Descriptors: Scientific Research, Teaching Models, Error of Measurement, Science Instruction
Peer reviewed Peer reviewed
Logan, S. R. – Journal of Chemical Education, 1995
Discusses the use of the least-squares regression line in determining the optimum straight line in an efficient and objective manner and the validity of its underlying assumptions in certain situations. Discusses the treatment of kinetic data, distortion from large errors, and the Guggenheim method. (JRH)
Descriptors: Chemistry, Data Analysis, Error of Measurement, Higher Education
Peer reviewed Peer reviewed
Edwards, Martin H. – Physics Teacher, 1989
Discusses the use of linear regression methods to extrapolate experimental data. Describes the method of averages and two weighted least squares. Calculates the error range of each method. (YP)
Descriptors: College Science, Error of Measurement, Least Squares Statistics, Physics
Peer reviewed Peer reviewed
Salin, Eric D. – Journal of Chemical Education, 1984
Describes an experiment designed to teach students to apply the same statistical awareness to instrumentation they commonly apply to classical techniques. Uses propagation of error techniques to pinpoint instrumental limitations and breakdowns and to demonstrate capabilities and limitations of volumetric and gravimetric methods. Provides lists of…
Descriptors: Chemistry, College Science, Electronic Equipment, Equipment Standards
Peer reviewed Peer reviewed
Roberts, Dana – Physics Teacher, 1983
Contends that the nature of physics has been misrepresented by blurring or ignoring important distinctions between "errors" and "discrepancies" and that dealing with these and related problems can improve students' enjoyment of labs and understanding of physics. Nature of physics, role of experiments, experimental errors, and error analysis are…
Descriptors: College Science, Error of Measurement, High Schools, Higher Education
Peer reviewed Peer reviewed
Blasiak, Wladyslaw – Physics Education, 1983
Classifies errors as either systematic or blunder and uncertainties as either systematic or random. Discusses use of error/uncertainty analysis in direct/indirect measurement, describing the process of planning experiments to ensure lowest possible uncertainty. Also considers appropriate level of error analysis for high school physics students'…
Descriptors: Error of Measurement, Error Patterns, High Schools, Mathematics Skills
Peer reviewed Peer reviewed
Hudgins, R. R.; Reilly, P. M. – Chemical Engineering Education, 1989
Discussed are problems encountered when a gas absorption experiment with strong measurement error is used. Notes students either avoid the experiment or report it as defective. Provides ideas to make lab experiments more instructive. (MVL)
Descriptors: Chemical Analysis, Chemical Engineering, Chemistry, College Science