Publication Date
In 2025 | 1 |
Since 2024 | 1 |
Since 2021 (last 5 years) | 2 |
Since 2016 (last 10 years) | 9 |
Since 2006 (last 20 years) | 16 |
Descriptor
Source
Author
Berger, Etienne | 1 |
Borge, Javier | 1 |
Casas, Lluís | 1 |
Cervantes Juárez, Erika | 1 |
Cifuentes, Lauren | 1 |
Clark, Aaron C. | 1 |
Coniglio, Lucie | 1 |
Elijah St. Germain | 1 |
Ernst, Jeremy | 1 |
Estop, Euge`nia | 1 |
Glasser, Leslie | 1 |
More ▼ |
Publication Type
Reports - Descriptive | 20 |
Journal Articles | 19 |
Reports - Research | 1 |
Speeches/Meeting Papers | 1 |
Education Level
Higher Education | 10 |
Postsecondary Education | 8 |
Elementary Education | 1 |
High Schools | 1 |
Secondary Education | 1 |
Audience
Teachers | 2 |
Practitioners | 1 |
Researchers | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Cervantes Juárez, Erika; Sánchez Guzmán, Daniel – Physics Education, 2023
In many science and engineering undergraduate programmes, physics courses are fundamental and can be seen as a potential place where students can develop complementary abilities such as the computational thinking process. The present work proposes and describes the learning science and engineering with electronic spreadsheets cycle (LSEESC)…
Descriptors: Engineering Education, Spreadsheets, Science Education, Physics
Elijah St. Germain – Journal of Chemical Education, 2025
Many approaches to teaching Newman projections and conformational manipulation rely on lecturing using only two-dimensional representations. While molecular models are recognized as useful learning tools, students are often left to figure out how to use them during the initial learning process. The availability of basic online molecular models…
Descriptors: Organic Chemistry, Science Instruction, Competency Based Education, Teaching Methods
Potratz, Jeffrey P. – Journal of Chemical Education, 2017
An interactive classroom demonstration that enhances students' knowledge of steady-state and Michaelis-Menten enzyme kinetics is described. The instructor uses a free version of professional-quality KinTek Explorer simulation software and student input to construct dynamic versions of three static hallmark images commonly used to introduce enzyme…
Descriptors: Biochemistry, Kinetics, Computer Simulation, Courseware
Ribbe, Joachim – Teaching Science, 2016
This paper aims to introduce an activity for teachers to assist in meeting learning outcomes as defined in the earth and environmental science units of the Australian Curriculum. The focus of the classroom tasks is on a global ocean feature referred to as El Niño. This phenomenon is part of the El Niño Southern Oscillation, which is largely…
Descriptors: Class Activities, Environmental Education, Earth Science, Oceanography
Privat, Romain; Jaubert, Jean-Noe¨l; Berger, Etienne; Coniglio, Lucie; Lemaitre, Ce´cile; Meimaroglou, Dimitrios; Warth, Vale´rie – Journal of Chemical Education, 2016
Robust and fast methods for chemical or multiphase equilibrium calculation are routinely needed by chemical-process engineers working on sizing or simulation aspects. Yet, while industrial applications essentially require calculation tools capable of discriminating between stable and nonstable states and converging to nontrivial solutions,…
Descriptors: Energy Education, Power Technology, Scientific Concepts, Scientific Principles
Álvarez-Rúa, Carmen; Borge, Javier – Journal of Chemical Education, 2016
Thermodynamic processes are complex phenomena that can be understood as a set of successive stages. When treating processes, classical thermodynamics (and most particularly, the Gibbsian formulation, predominantly used in chemistry) only pays attention to initial and final states. However, reintroducing the notion of process is absolutely…
Descriptors: Undergraduate Study, Science Education, Chemistry, Thermodynamics
Lundquist, Karl; Herndon, Conner; Harty, Tyson H.; Gumbart, James C. – Biochemistry and Molecular Biology Education, 2016
It is often difficult for students to develop an intuition about molecular processes, which occur in a realm far different from day-to-day life. For example, thermal fluctuations take on hurricane-like proportions at the molecular scale. Students need a way to visualize realistic depictions of molecular processes to appreciate them. To this end,…
Descriptors: High School Students, Classroom Techniques, Molecular Structure, Computer Simulation
Stansell, Alicia; Tyler-Wood, Tandra; Stansell, Christina – International Association for Development of the Information Society, 2016
The reverse engineering of simple inventions that were of historic significance is now possible in a classroom by using digital models provided by places like the Smithsonian. The digital models can facilitate the mastery of students' STEM learning by utilizing digital fabrication in maker spaces to provide an opportunity for reverse engineer and…
Descriptors: STEM Education, Manufacturing, Scientific Concepts, Mathematical Concepts
Smiar, Karen; Mendez, J. D. – Journal of Chemical Education, 2016
Molecular model kits have been used in chemistry classrooms for decades but have seen very little recent innovation. Using 3D printing, three sets of physical models were created for a first semester, introductory chemistry course. Students manipulated these interactive models during class activities as a supplement to existing teaching tools for…
Descriptors: Molecular Structure, Computer Graphics, Printed Materials, Models
Glasser, Leslie – Journal of Chemical Education, 2014
We introduce various methods which are used to depict three-dimensional objects on two-dimensional surfaces. Many of these are artistic and not conducive to exact interpretation. Instead, the scientific and engineering practices and mathematics of orthographic projection are introduced, and illustrated in an accompanying interactive Excel…
Descriptors: Science Education, Illustrations, Computer Graphics, Scientific Concepts
Meyer, Scott C. – Journal of Chemical Education, 2015
An upper-division undergraduate laboratory experiment is described that explores the structure/function relationship of protein domains, namely leucine zippers, through a molecular graphics computer program and physical models fabricated by 3D printing. By generating solvent accessible surfaces and color-coding hydrophobic, basic, and acidic amino…
Descriptors: College Science, Undergraduate Study, Science Laboratories, Science Experiments
Casas, Lluís; Estop, Euge`nia – Journal of Chemical Education, 2015
Both, virtual and printed 3D crystal models can help students and teachers deal with chemical education topics such as symmetry and point groups. In the present paper, two freely downloadable tools (interactive PDF files and a mobile app) are presented as examples of the application of 3D design to study point-symmetry. The use of 3D printing to…
Descriptors: Geometry, Models, Printing, Physical Sciences
South, Andy – Primary Science, 2012
Creating charts and graphs is all about visual abstraction: the process of representing aspects of data with imagery that can be interpreted by the reader. Children may need help making the link between the "real" and the image. This abstraction can be achieved using symbols, size, colour and position. Where the representation is close to what…
Descriptors: Computer Graphics, Creativity, Elementary School Science, Scientific Concepts
Sutton, Kevin; Grubbs, Michael E.; Ernst, Jeremy – Technology and Engineering Teacher, 2014
Engineering design has been suggested as a viable instructional approach for Technology Education (TE) to intentionally provide students the opportunity to apply multidisciplinary concepts to solve ill-defined design challenges (Wells & Ernst, 2012; Sanders & Wells, 2010; Wicklein, 2006). Currently, the context for design challenges in TE…
Descriptors: Design, Design Crafts, Design Requirements, Engineering Technology
Prayaga, Chandra – Physics Education, 2008
A simple interface between VPython and Microsoft (MS) Office products such as Word and Excel, controlled by Visual Basic for Applications, is described. The interface allows the preparation of content-rich, interactive learning environments by taking advantage of the three-dimensional (3D) visualization capabilities of VPython and the GUI…
Descriptors: Computer Assisted Instruction, Visualization, Scientific Concepts, Computer Software
Previous Page | Next Page »
Pages: 1 | 2