Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 1 |
Since 2016 (last 10 years) | 4 |
Since 2006 (last 20 years) | 9 |
Descriptor
Source
Author
Allanson, Patricia E. | 1 |
Astivia, Oscar L. Olvera | 1 |
Browne, Michael W. | 1 |
Cai, Li | 1 |
Gilliland, Dennis | 1 |
Harradine, Anthony | 1 |
Hau, Kit-Tai | 1 |
Kazak, Sibel | 1 |
Kolstad, Andrew | 1 |
Konold, Cliff | 1 |
Lee, Taehun | 1 |
More ▼ |
Publication Type
Journal Articles | 10 |
Reports - Descriptive | 10 |
Education Level
Higher Education | 2 |
High Schools | 1 |
Middle Schools | 1 |
Postsecondary Education | 1 |
Secondary Education | 1 |
Location
Laws, Policies, & Programs
Assessments and Surveys
National Assessment of… | 1 |
Program for International… | 1 |
What Works Clearinghouse Rating
Victoria Savalei; Yves Rosseel – Structural Equation Modeling: A Multidisciplinary Journal, 2022
This article provides an overview of different computational options for inference following normal theory maximum likelihood (ML) estimation in structural equation modeling (SEM) with incomplete normal and nonnormal data. Complete data are covered as a special case. These computational options include whether the information matrix is observed or…
Descriptors: Structural Equation Models, Computation, Error of Measurement, Robustness (Statistics)
Allanson, Patricia E.; Notar, Charles E. – Education Quarterly Reviews, 2020
This article discusses the basics of the "4 scales of measurement" and how they are applicable to research or everyday tools of life. To do this you will be able to list and describe the four types of scales of measurement used in quantitative research; provide examples of uses of the four scales of measurement; and determine the…
Descriptors: Statistical Analysis, Measurement, Statistics, Qualitative Research
Astivia, Oscar L. Olvera; Zumbo, Bruno D. – Practical Assessment, Research & Evaluation, 2019
Within psychology and the social sciences, Ordinary Least Squares (OLS) regression is one of the most popular techniques for data analysis. In order to ensure the inferences from the use of this method are appropriate, several assumptions must be satisfied, including the one of constant error variance (i.e. homoskedasticity). Most of the training…
Descriptors: Multiple Regression Analysis, Least Squares Statistics, Statistical Analysis, Error of Measurement
Oranje, Andreas; Kolstad, Andrew – Journal of Educational and Behavioral Statistics, 2019
The design and psychometric methodology of the National Assessment of Educational Progress (NAEP) is constantly evolving to meet the changing interests and demands stemming from a rapidly shifting educational landscape. NAEP has been built on strong research foundations that include conducting extensive evaluations and comparisons before new…
Descriptors: National Competency Tests, Psychometrics, Statistical Analysis, Computation
Xi, Nuo; Browne, Michael W. – Journal of Educational and Behavioral Statistics, 2014
A promising "underlying bivariate normal" approach was proposed by Jöreskog and Moustaki for use in the factor analysis of ordinal data. This was a limited information approach that involved the maximization of a composite likelihood function. Its advantage over full-information maximum likelihood was that very much less computation was…
Descriptors: Factor Analysis, Maximum Likelihood Statistics, Data, Computation
Lee, Taehun; Cai, Li – Journal of Educational and Behavioral Statistics, 2012
Model-based multiple imputation has become an indispensable method in the educational and behavioral sciences. Mean and covariance structure models are often fitted to multiply imputed data sets. However, the presence of multiple random imputations complicates model fit testing, which is an important aspect of mean and covariance structure…
Descriptors: Statistical Inference, Structural Equation Models, Goodness of Fit, Statistical Analysis
Gilliland, Dennis; Melfi, Vince – Journal of Statistics Education, 2010
Confidence interval estimation is a fundamental technique in statistical inference. Margin of error is used to delimit the error in estimation. Dispelling misinterpretations that teachers and students give to these terms is important. In this note, we give examples of the confusion that can arise in regard to confidence interval estimation and…
Descriptors: Statistical Inference, Surveys, Intervals, Sample Size
Mulekar, Madhuri S.; Siegel, Murray H. – Mathematics Teacher, 2009
If students are to understand inferential statistics successfully, they must have a profound understanding of the nature of the sampling distribution. Specifically, they must comprehend the determination of the expected value and standard error of a sampling distribution as well as the meaning of the central limit theorem. Many students in a high…
Descriptors: Statistical Inference, Statistics, Sample Size, Error of Measurement
Konold, Cliff; Harradine, Anthony; Kazak, Sibel – International Journal of Computers for Mathematical Learning, 2007
In current curriculum materials for middle school students in the US, data and chance are considered as separate topics. They are then ideally brought together in the minds of high school or university students when they learn about statistical inference. In recent studies we have been attempting to build connections between data and chance in the…
Descriptors: Middle School Students, Computer Software, Statistical Inference, Statistical Distributions
Marsh, Herbert W.; Hau, Kit-Tai; Wen, Zhonglin – Structural Equation Modeling, 2004
Goodness-of-fit (GOF) indexes provide "rules of thumb"?recommended cutoff values for assessing fit in structural equation modeling. Hu and Bentler (1999) proposed a more rigorous approach to evaluating decision rules based on GOF indexes and, on this basis, proposed new and more stringent cutoff values for many indexes. This article discusses…
Descriptors: Statistical Significance, Structural Equation Models, Evaluation Methods, Evaluation Research