Publication Date
| In 2026 | 0 |
| Since 2025 | 2 |
| Since 2022 (last 5 years) | 9 |
| Since 2017 (last 10 years) | 17 |
| Since 2007 (last 20 years) | 36 |
Descriptor
Source
Author
| Ledermann, Thomas | 2 |
| Macho, Siegfried | 2 |
| Qinyun Lin | 2 |
| Ran Xu | 2 |
| Shipley, Bill | 2 |
| Tenenbaum, Joshua B. | 2 |
| Ames, Allison | 1 |
| Atkinson, MaryAnne | 1 |
| Bajgier, Steve M. | 1 |
| Batchelder, William H. | 1 |
| Bauer, Daniel J. | 1 |
| More ▼ | |
Publication Type
| Reports - Descriptive | 47 |
| Journal Articles | 43 |
| Opinion Papers | 2 |
| Speeches/Meeting Papers | 2 |
| Books | 1 |
| Guides - General | 1 |
| Tests/Questionnaires | 1 |
Education Level
Audience
| Teachers | 3 |
| Researchers | 2 |
| Practitioners | 1 |
Location
| Georgia | 1 |
Laws, Policies, & Programs
Assessments and Surveys
| Program for International… | 1 |
| Progress in International… | 1 |
| SAT (College Admission Test) | 1 |
| Trends in International… | 1 |
What Works Clearinghouse Rating
Bernard J. Koch; Tim Sainburg; Pablo Geraldo Bastías; Song Jiang; Yizhou Sun; Jacob G. Foster – Sociological Methods & Research, 2025
This primer systematizes the emerging literature on causal inference using deep neural networks under the potential outcomes framework. It provides an intuitive introduction to building and optimizing custom deep learning models and shows how to adapt them to estimate/predict heterogeneous treatment effects. It also discusses ongoing work to…
Descriptors: Artificial Intelligence, Statistical Inference, Causal Models, Social Science Research
Sarah Narvaiz; Qinyun Lin; Joshua M. Rosenberg; Kenneth A. Frank; Spiro J. Maroulis; Wei Wang; Ran Xu – Grantee Submission, 2024
Sensitivity analysis, a statistical method crucial for validating inferences across disciplines, quantifies the conditions that could alter conclusions (Razavi et al., 2021). One line of work is rooted in linear models and foregrounds the sensitivity of inferences to the strength of omitted variables (Cinelli & Hazlett, 2019; Frank, 2000). A…
Descriptors: Statistical Analysis, Computer Software, Robustness (Statistics), Statistical Inference
Peer reviewedKen Frank; Guan Saw; Qinyun Lin; Ran Xu; Joshua Rosenberg; Spiro Maroulis; Bret Staudt Willet – Grantee Submission, 2025
This is a practical guide for applying the Impact Threshold for a Confounding Variable and the Robustness of Inference to Replacement using the konfound packages in Stata and R as well as the R-shiny app. It includes motivation worked examples, and tutorials.
Descriptors: Robustness (Statistics), Statistical Inference, Programming Languages, Computer Software
Luke W. Miratrix – Grantee Submission, 2022
We are sometimes forced to use the Interrupted Time Series (ITS) design as an identification strategy for potential policy change, such as when we only have a single treated unit and cannot obtain comparable controls. For example, with recent county- and state-wide criminal justice reform efforts, where judicial bodies have changed bail setting…
Descriptors: Causal Models, Case Studies, Quasiexperimental Design, Monte Carlo Methods
Vidushi Adlakha; Eric Kuo – Physical Review Physics Education Research, 2023
Recent critiques of physics education research (PER) studies have revoiced the critical issues when drawing causal inferences from observational data where no intervention is present. In response to a call for a "causal reasoning primer" in PER, this paper discusses some of the fundamental issues in statistical causal inference. In…
Descriptors: Physics, Science Education, Statistical Inference, Causal Models
Victoria Savalei; Yves Rosseel – Structural Equation Modeling: A Multidisciplinary Journal, 2022
This article provides an overview of different computational options for inference following normal theory maximum likelihood (ML) estimation in structural equation modeling (SEM) with incomplete normal and nonnormal data. Complete data are covered as a special case. These computational options include whether the information matrix is observed or…
Descriptors: Structural Equation Models, Computation, Error of Measurement, Robustness (Statistics)
Yamaguchi, Kazuhiro; Okada, Kensuke – Journal of Educational and Behavioral Statistics, 2020
In this article, we propose a variational Bayes (VB) inference method for the deterministic input noisy AND gate model of cognitive diagnostic assessment. The proposed method, which applies the iterative algorithm for optimization, is derived based on the optimal variational posteriors of the model parameters. The proposed VB inference enables…
Descriptors: Bayesian Statistics, Statistical Inference, Cognitive Measurement, Mathematics
Bonnett, Laura J.; White, Simon R. – Teaching Statistics: An International Journal for Teachers, 2019
We describe an activity that introduces students to population modelling, enables them to use estimates obtained from a sample to infer back to the population, and understands how the findings are translatable via penguins and their poo!
Descriptors: Mathematics Activities, Mathematical Models, Statistics, Statistical Inference
Jones, Ryan Seth; Jia, Zhigang; Bezaire, Joel – Mathematics Teacher: Learning and Teaching PK-12, 2020
Too often, statistical inference and probability are treated in schools like they are unrelated. In this paper, we describe how we supported students to learn about the role of probability in making inferences with variable data by building models of real world events and using them to simulate repeated samples.
Descriptors: Statistical Inference, Probability, Mathematics Instruction, Mathematical Models
Jane E. Miller – Numeracy, 2023
Students often believe that statistical significance is the only determinant of whether a quantitative result is "important." In this paper, I review traditional null hypothesis statistical testing to identify what questions inferential statistics can and cannot answer, including statistical significance, effect size and direction,…
Descriptors: Statistical Significance, Holistic Approach, Statistical Inference, Effect Size
Daniel Kasper; Katrin Schulz-Heidorf; Knut Schwippert – Sociological Methods & Research, 2024
In this article, we extend Liao's test for across-group comparisons of the fixed effects from the generalized linear model to the fixed and random effects of the generalized linear mixed model (GLMM). Using as our basis the Wald statistic, we developed an asymptotic test statistic for across-group comparisons of these effects. The test can be…
Descriptors: Models, Achievement Tests, Foreign Countries, International Assessment
Katie Makar; Helen M. Doerr; Robert delMas – Mathematics Teacher: Learning and Teaching PK-12, 2020
People use models every day without even realizing it. Models create a structure for predictions (inferences) that can be used or adapted as situations change. A model is a relational system that highlights aspects of a phenomenon that the modeler deems important and diminishes the rest. Statistical models capture variability of data, enabling…
Descriptors: Mathematics Instruction, Mathematical Models, Statistics Education, Teaching Methods
Marmolejo-Ramos, Fernando; Cousineau, Denis – Educational and Psychological Measurement, 2017
The number of articles showing dissatisfaction with the null hypothesis statistical testing (NHST) framework has been progressively increasing over the years. Alternatives to NHST have been proposed and the Bayesian approach seems to have achieved the highest amount of visibility. In this last part of the special issue, a few alternative…
Descriptors: Hypothesis Testing, Bayesian Statistics, Evaluation Methods, Statistical Inference
Finch, Holmes – Practical Assessment, Research & Evaluation, 2022
Researchers in many disciplines work with ranking data. This data type is unique in that it is often deterministic in nature (the ranks of items "k"-1 determine the rank of item "k"), and the difference in a pair of rank scores separated by "k" units is equivalent regardless of the actual values of the two ranks in…
Descriptors: Data Analysis, Statistical Inference, Models, College Faculty
Walker, David A.; Smith, Thomas J. – Measurement and Evaluation in Counseling and Development, 2017
Nonnormality of data presents unique challenges for researchers who wish to carry out structural equation modeling. The subsequent SPSS syntax program computes bootstrap-adjusted fit indices (comparative fit index, Tucker-Lewis index, incremental fit index, and root mean square error of approximation) that adjust for nonnormality, along with the…
Descriptors: Robustness (Statistics), Sampling, Statistical Inference, Goodness of Fit

Direct link
