NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
Assessments and Surveys
Wechsler Adult Intelligence…1
What Works Clearinghouse Rating
Showing 1 to 15 of 52 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Tihomir Asparouhov; Bengt Muthén – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Penalized structural equation models (PSEM) is a new powerful estimation technique that can be used to tackle a variety of difficult structural estimation problems that can not be handled with previously developed methods. In this paper we describe the PSEM framework and illustrate the quality of the method with simulation studies.…
Descriptors: Structural Equation Models, Computation, Factor Analysis, Measurement Techniques
Peer reviewed Peer reviewed
Direct linkDirect link
Alexander von Eye; Wolfgang Wiedermann – Merrill-Palmer Quarterly: A Peer Relations Journal, 2024
In this article, we pursue two points of discussion. First, a new illustration is presented of the person-oriented tenet according to which it can be hazardous to generalize to the individual results that are based on the analysis of aggregated data. Second, it is illustrated that taking into account serial dependence information can result in not…
Descriptors: Research Methodology, Generalizability Theory, Generalization, Multivariate Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Philipp Sterner; Kim De Roover; David Goretzko – Structural Equation Modeling: A Multidisciplinary Journal, 2025
When comparing relations and means of latent variables, it is important to establish measurement invariance (MI). Most methods to assess MI are based on confirmatory factor analysis (CFA). Recently, new methods have been developed based on exploratory factor analysis (EFA); most notably, as extensions of multi-group EFA, researchers introduced…
Descriptors: Error of Measurement, Measurement Techniques, Factor Analysis, Structural Equation Models
Peer reviewed Peer reviewed
Direct linkDirect link
Raykov, Tenko; Calvocoressi, Lisa – Educational and Psychological Measurement, 2021
A procedure for evaluating the average R-squared index for a given set of observed variables in an exploratory factor analysis model is discussed. The method can be used as an effective aid in the process of model choice with respect to the number of factors underlying the interrelationships among studied measures. The approach is developed within…
Descriptors: Factor Analysis, Structural Equation Models, Statistical Analysis, Selection
Peer reviewed Peer reviewed
Direct linkDirect link
Pacewicz, Christine E.; Hill, Christopher R.; Lee, Seungmin; Myers, Nicholas D.; Prilleltensky, Isaac; McMahon, Adam; Pfeiffer, Karin A.; Brincks, Ahnalee M. – Measurement in Physical Education and Exercise Science, 2022
In physical education and exercise science, it is common to examine mean differences between groups or to assess change across time. However, before group differences or change can be confidently examined, measurement invariance can be tested. Measurement invariance tests the equivalence of a construct across groups or across time. If measurement…
Descriptors: Physical Education, Exercise, Well Being, Self Efficacy
Peer reviewed Peer reviewed
Direct linkDirect link
Sideridis, Georgios D.; Jaffari, Fathima – Measurement and Evaluation in Counseling and Development, 2022
The present study describes an R function that implements six corrective procedures developed by Bartlett, Swain, and Yuan in the correction of 21 statistics associated with the omnibus Chi-square test, the residuals, or fit indices in confirmatory factor analysis (CFA) and structural equation modeling (SEM).
Descriptors: Statistical Analysis, Goodness of Fit, Factor Analysis, Structural Equation Models
Merkle, Edgar C.; Fitzsimmons, Ellen; Uanhoro, James; Goodrich, Ben – Grantee Submission, 2021
Structural equation models comprise a large class of popular statistical models, including factor analysis models, certain mixed models, and extensions thereof. Model estimation is complicated by the fact that we typically have multiple interdependent response variables and multiple latent variables (which may also be called random effects or…
Descriptors: Bayesian Statistics, Structural Equation Models, Psychometrics, Factor Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Paek, Insu; Cui, Mengyao; Öztürk Gübes, Nese; Yang, Yanyun – Educational and Psychological Measurement, 2018
The purpose of this article is twofold. The first is to provide evaluative information on the recovery of model parameters and their standard errors for the two-parameter item response theory (IRT) model using different estimation methods by Mplus. The second is to provide easily accessible information for practitioners, instructors, and students…
Descriptors: Item Response Theory, Computation, Factor Analysis, Statistical Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Nagy, Gabriel; Brunner, Martin; Lüdtke, Oliver; Greiff, Samuel – Journal of Experimental Education, 2017
We present factor extension procedures for confirmatory factor analysis that provide estimates of the relations of common and unique factors with external variables that do not undergo factor analysis. We present identification strategies that build upon restrictions of the pattern of correlations between unique factors and external variables. The…
Descriptors: Factor Analysis, Evaluation Methods, Identification, Correlation
Peer reviewed Peer reviewed
Direct linkDirect link
Pritikin, Joshua N.; Hunter, Micheal D.; Boker, Steven M. – Educational and Psychological Measurement, 2015
This article introduces an item factor analysis (IFA) module for "OpenMx," a free, open-source, and modular statistical modeling package that runs within the R programming environment on GNU/Linux, Mac OS X, and Microsoft Windows. The IFA module offers a novel model specification language that is well suited to programmatic generation…
Descriptors: Factor Analysis, Open Source Technology, Models, Structural Equation Models
Peer reviewed Peer reviewed
Direct linkDirect link
Lewis, Todd F. – Measurement and Evaluation in Counseling and Development, 2017
American Educational Research Association (AERA) standards stipulate that researchers show evidence of the internal structure of instruments. Confirmatory factor analysis (CFA) is one structural equation modeling procedure designed to assess construct validity of assessments that has broad applicability for counselors interested in instrument…
Descriptors: Educational Research, Factor Analysis, Structural Equation Models, Construct Validity
Peer reviewed Peer reviewed
Direct linkDirect link
Brandmaier, Andreas M.; von Oertzen, Timo; McArdle, John J.; Lindenberger, Ulman – Psychological Methods, 2013
In the behavioral and social sciences, structural equation models (SEMs) have become widely accepted as a modeling tool for the relation between latent and observed variables. SEMs can be seen as a unification of several multivariate analysis techniques. SEM Trees combine the strengths of SEMs and the decision tree paradigm by building tree…
Descriptors: Structural Equation Models, Multivariate Analysis, Computation, Factor Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Peeters, Carel F. W. – Psychometrika, 2012
In an addendum to his seminal 1969 article Joreskog stated two sets of conditions for rotational identification of the oblique factor solution under utilization of fixed zero elements in the factor loadings matrix (Joreskog in "Advances in factor analysis and structural equation models," pp. 40-43, 1979). These condition sets, formulated under…
Descriptors: Structural Equation Models, Factor Analysis, Correlation
Peer reviewed Peer reviewed
Direct linkDirect link
Schmitt, Thomas A. – Journal of Psychoeducational Assessment, 2011
Researchers must make numerous choices when conducting factor analyses, each of which can have significant ramifications on the model results. They must decide on an appropriate sample size to achieve accurate parameter estimates and adequate power, a factor model and estimation method, a method for determining the number of factors and evaluating…
Descriptors: Factor Analysis, Computation, Researchers, Research Methodology
Peer reviewed Peer reviewed
Direct linkDirect link
Wainer, Howard – Journal of Educational and Behavioral Statistics, 2011
This article presents an interview with Karl Gustav Joreskog. Karl Gustav Joreskog was born in Amal, Sweden, on April 25, 1935. He did his undergraduate studies at Uppsala University from 1955 to 1957, with a major in mathematics and physics. He received a PhD in statistics at Uppsala University in 1963, and he was a research statistician at…
Descriptors: Statistics, Structural Equation Models, Computer Software, Factor Analysis
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4