Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 1 |
Since 2016 (last 10 years) | 2 |
Since 2006 (last 20 years) | 8 |
Descriptor
Statistical Inference | 11 |
Structural Equation Models | 11 |
Computation | 6 |
Sampling | 4 |
Error of Measurement | 3 |
Goodness of Fit | 3 |
Statistical Analysis | 3 |
Comparative Analysis | 2 |
Data | 2 |
Robustness (Statistics) | 2 |
Simulation | 2 |
More ▼ |
Source
Structural Equation Modeling:… | 5 |
Structural Equation Modeling | 3 |
Journal of Educational and… | 1 |
Measurement and Evaluation in… | 1 |
Psychological Methods | 1 |
Author
Ledermann, Thomas | 2 |
Macho, Siegfried | 2 |
Shipley, Bill | 2 |
Bauer, Daniel J. | 1 |
Bentler, Peter M. | 1 |
Cai, Li | 1 |
Coffman, Donna L. | 1 |
Hau, Kit-Tai | 1 |
Kenny, David A. | 1 |
Lee, Taehun | 1 |
Losardo, Diane | 1 |
More ▼ |
Publication Type
Journal Articles | 11 |
Reports - Descriptive | 11 |
Education Level
Audience
Researchers | 1 |
Location
Laws, Policies, & Programs
Assessments and Surveys
Program for International… | 1 |
What Works Clearinghouse Rating
Victoria Savalei; Yves Rosseel – Structural Equation Modeling: A Multidisciplinary Journal, 2022
This article provides an overview of different computational options for inference following normal theory maximum likelihood (ML) estimation in structural equation modeling (SEM) with incomplete normal and nonnormal data. Complete data are covered as a special case. These computational options include whether the information matrix is observed or…
Descriptors: Structural Equation Models, Computation, Error of Measurement, Robustness (Statistics)
Walker, David A.; Smith, Thomas J. – Measurement and Evaluation in Counseling and Development, 2017
Nonnormality of data presents unique challenges for researchers who wish to carry out structural equation modeling. The subsequent SPSS syntax program computes bootstrap-adjusted fit indices (comparative fit index, Tucker-Lewis index, incremental fit index, and root mean square error of approximation) that adjust for nonnormality, along with the…
Descriptors: Robustness (Statistics), Sampling, Statistical Inference, Goodness of Fit
Ledermann, Thomas; Macho, Siegfried; Kenny, David A. – Structural Equation Modeling: A Multidisciplinary Journal, 2011
The assessment of mediation in dyadic data is an important issue if researchers are to test process models. Using an extended version of the actor-partner interdependence model the estimation and testing of mediation is complex, especially when dyad members are distinguishable (e.g., heterosexual couples). We show how the complexity of the model…
Descriptors: Structural Equation Models, Sampling, Statistical Inference, Interpersonal Relationship
Lee, Taehun; Cai, Li – Journal of Educational and Behavioral Statistics, 2012
Model-based multiple imputation has become an indispensable method in the educational and behavioral sciences. Mean and covariance structure models are often fitted to multiply imputed data sets. However, the presence of multiple random imputations complicates model fit testing, which is an important aspect of mean and covariance structure…
Descriptors: Statistical Inference, Structural Equation Models, Goodness of Fit, Statistical Analysis
Macho, Siegfried; Ledermann, Thomas – Psychological Methods, 2011
The phantom model approach for estimating, testing, and comparing specific effects within structural equation models (SEMs) is presented. The rationale underlying this novel method consists in representing the specific effect to be assessed as a total effect within a separate latent variable model, the phantom model that is added to the main…
Descriptors: Structural Equation Models, Computation, Comparative Analysis, Sampling
Pek, Jolynn; Losardo, Diane; Bauer, Daniel J. – Structural Equation Modeling: A Multidisciplinary Journal, 2011
Compared to parametric models, nonparametric and semiparametric approaches to modeling nonlinearity between latent variables have the advantage of recovering global relationships of unknown functional form. Bauer (2005) proposed an indirect application of finite mixtures of structural equation models where latent components are estimated in the…
Descriptors: Structural Equation Models, Sampling, Statistical Inference, Computation
Coffman, Donna L. – Structural Equation Modeling: A Multidisciplinary Journal, 2011
Mediation is usually assessed by a regression-based or structural equation modeling (SEM) approach that we refer to as the classical approach. This approach relies on the assumption that there are no confounders that influence both the mediator, "M", and the outcome, "Y". This assumption holds if individuals are randomly…
Descriptors: Structural Equation Models, Simulation, Regression (Statistics), Probability
Savalei, Victoria; Bentler, Peter M. – Structural Equation Modeling: A Multidisciplinary Journal, 2009
A well-known ad-hoc approach to conducting structural equation modeling with missing data is to obtain a saturated maximum likelihood (ML) estimate of the population covariance matrix and then to use this estimate in the complete data ML fitting function to obtain parameter estimates. This 2-stage (TS) approach is appealing because it minimizes a…
Descriptors: Structural Equation Models, Data, Computation, Maximum Likelihood Statistics

Shipley, Bill – Structural Equation Modeling, 2000
Introduces a new inferential test for acyclic structural equation models (SEM) without latent variables or correlated errors. The test is based on the independence relations predicted by the directed acyclic graph of the SEMs, as given by the concept of d-separation. A wide range of distributional assumptions and structural functions can be…
Descriptors: Graphs, Statistical Inference, Structural Equation Models

Shipley, Bill – Structural Equation Modeling, 2003
Shows how to extend the inferential test of B. Shipley (2000), which is applicable to recursive path models without correlated errors, to a class of recursive path models that includes correlated errors. Discusses when the extended model is and is not superior to classical structural equation modeling. (SLD)
Descriptors: Correlation, Path Analysis, Statistical Inference, Structural Equation Models
Marsh, Herbert W.; Hau, Kit-Tai; Wen, Zhonglin – Structural Equation Modeling, 2004
Goodness-of-fit (GOF) indexes provide "rules of thumb"?recommended cutoff values for assessing fit in structural equation modeling. Hu and Bentler (1999) proposed a more rigorous approach to evaluating decision rules based on GOF indexes and, on this basis, proposed new and more stringent cutoff values for many indexes. This article discusses…
Descriptors: Statistical Significance, Structural Equation Models, Evaluation Methods, Evaluation Research