Publication Date
| In 2026 | 0 |
| Since 2025 | 0 |
| Since 2022 (last 5 years) | 0 |
| Since 2017 (last 10 years) | 2 |
| Since 2007 (last 20 years) | 8 |
Descriptor
Source
Author
Publication Type
| Journal Articles | 19 |
| Reports - Descriptive | 19 |
Education Level
| Higher Education | 2 |
| Elementary Education | 1 |
| Grade 3 | 1 |
| Postsecondary Education | 1 |
Audience
Location
| West Germany | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Peugh, James; Feldon, David F. – CBE - Life Sciences Education, 2020
Structural equation modeling is an ideal data analytical tool for testing complex relationships among many analytical variables. It can simultaneously test multiple mediating and moderating relationships, estimate latent variables on the basis of related measures, and address practical issues such as nonnormality and missing data. To test the…
Descriptors: Structural Equation Models, Goodness of Fit, Statistical Analysis, Computation
Lewis, Todd F. – Measurement and Evaluation in Counseling and Development, 2017
American Educational Research Association (AERA) standards stipulate that researchers show evidence of the internal structure of instruments. Confirmatory factor analysis (CFA) is one structural equation modeling procedure designed to assess construct validity of assessments that has broad applicability for counselors interested in instrument…
Descriptors: Educational Research, Factor Analysis, Structural Equation Models, Construct Validity
Greiff, Samuel; Wustenberg, Sascha; Funke, Joachim – Applied Psychological Measurement, 2012
This article addresses two unsolved measurement issues in dynamic problem solving (DPS) research: (a) unsystematic construction of DPS tests making a comparison of results obtained in different studies difficult and (b) use of time-intensive single tasks leading to severe reliability problems. To solve these issues, the MicroDYN approach is…
Descriptors: Problem Solving, Tests, Measurement, Structural Equation Models
Raykov, Tenko; Penev, Spiridon – Structural Equation Modeling: A Multidisciplinary Journal, 2010
A latent variable analysis procedure for evaluation of reliability coefficients for 2-level models is outlined. The method provides point and interval estimates of group means' reliability, overall reliability of means, and conditional reliability. In addition, the approach can be used to test simple hypotheses about these parameters. The…
Descriptors: Reliability, Evaluation, Models, Intervals
Eastman, Jacqueline Kilsheimer; Iyer, Rajesh; Eastman, Kevin L. – Journal of Education for Business, 2011
The authors modeled the relationships between students' perceptions of interactive technology in terms of whether it helps them pay more attention and be better prepared in a Consumer Behavior course and their attitude toward and satisfaction with it. The results suggest that students who feel they pay more attention due to the use of Interactive…
Descriptors: Student Attitudes, Consumer Economics, Business Education, Educational Technology
Bollen, Kenneth A.; Davis, Walter R. – Structural Equation Modeling: A Multidisciplinary Journal, 2009
We discuss the identification, estimation, and testing of structural equation models that have causal indicators. We first provide 2 rules of identification that are particularly helpful in models with causal indicators--the 2C emitted paths rule and the exogenous X rule. We demonstrate how these rules can help us distinguish identified from…
Descriptors: Structural Equation Models, Testing, Identification, Statistical Significance
Raykov, Tenko; Mels, Gerhard – Structural Equation Modeling: A Multidisciplinary Journal, 2009
A readily implemented procedure is discussed for interval estimation of indexes of interrelationship between items from multiple-component measuring instruments as well as between items and total composite scores. The method is applicable with categorical (ordinal) observed variables, and can be widely used in the process of scale construction,…
Descriptors: Intervals, Structural Equation Models, Biomedicine, Correlation
Peer reviewedRaykov, Tenko – Structural Equation Modeling, 2001
Presents a didactic collection of covariance and mean structure hypotheses that can be tested using a widely applicable and easy to use structural equation modeling approach. The method is useful when the goal is to examine the observed multivariable structure or test hypotheses regarding interrelationships in measures and when large samples are…
Descriptors: Hypothesis Testing, Structural Equation Models
Peer reviewedKaplan, David – Multivariate Behavioral Research, 1999
Proposes an extension of the propensity score adjustment method to the analysis of group differences on latent variable models. Uses multiple indicators-multiple causes (MIMIC) structural equation modeling to test hypotheses about treatment group differences. Discusses the role of factorial invariance as it relates to this approach. (SLD)
Descriptors: Groups, Hypothesis Testing, Scores, Structural Equation Models
van der Sluis, Sophie; Dolan, Conor V.; Stoel, Reinoud D. – Structural Equation Modeling: A Multidisciplinary Journal, 2005
This article is concerned with the seemingly simple problem of testing whether latent factors are perfectly correlated (i.e., statistically indistinct). In recent literature, researchers have used different approaches, which are not always correct or complete. We discuss the parameter constraints required to obtain such perfectly correlated latent…
Descriptors: Testing, Factor Structure, Structural Equation Models, Correlation
Li, Heng – Psychometrika, 2004
A type of data layout that may be considered as an extension of the two-way random effects analysis of variance is characterized and modeled based on group invariance. The data layout seems to be suitable for several scenarios in psychometrics, including the one in which multiple measurements are taken on each of a set of variables, and the…
Descriptors: Statistical Analysis, Psychometrics, Hypothesis Testing, Algebra
Asparouhov, Tihomir; Muthen, Bengt – Structural Equation Modeling: A Multidisciplinary Journal, 2009
Exploratory factor analysis (EFA) is a frequently used multivariate analysis technique in statistics. Jennrich and Sampson (1966) solved a significant EFA factor loading matrix rotation problem by deriving the direct Quartimin rotation. Jennrich was also the first to develop standard errors for rotated solutions, although these have still not made…
Descriptors: Structural Equation Models, Testing, Factor Analysis, Research Methodology
Peer reviewedSteiger, James H. – Structural Equation Modeling, 2000
Discusses two criticisms raised by L. Hayduk and D. Glaser of the most commonly used point estimate of the Root Mean Square Error (RMSEA) and points out misconceptions in their discussion. Although there are apparent flaws in their arguments, the RMSEA is open to question for several other reasons. (SLD)
Descriptors: Error of Measurement, Estimation (Mathematics), Factor Analysis, Hypothesis Testing
Peer reviewedLee, Sik-Yum; Song, Xin-Yuan – Multivariate Behavioral Research, 2001
Demonstrates the use of the well-known Bayes factor in the Bayesian literature for hypothesis testing and model comparison in general two-level structural equation models. Shows that the proposed method is flexible and can be applied to situations with a wide variety of nonnested models. (SLD)
Descriptors: Bayesian Statistics, Comparative Analysis, Goodness of Fit, Hypothesis Testing
Ferrer, Emilio; Hamagami, Fumiaki; McArdle, John J. – Structural Equation Modeling, 2004
This article offers different examples of how to fit latent growth curve (LGC) models to longitudinal data using a variety of different software programs (i.e., LISREL, Mx, Mplus, AMOS, SAS). The article shows how the same model can be fitted using both structural equation modeling and multilevel software, with nearly identical results, even in…
Descriptors: Computer Software, Structural Equation Models, Longitudinal Studies, Data Analysis
Previous Page | Next Page ยป
Pages: 1 | 2
Direct link
