NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 3 results Save | Export
Kenneth A. Frank; Qinyun Lin; Ran Xu; Spiro Maroulis; Anna Mueller – Grantee Submission, 2023
Social scientists seeking to inform policy or public action must carefully consider how to identify effects and express inferences because actions based on invalid inferences will not yield the intended results. Recognizing the complexities and uncertainties of social science, we seek to inform inevitable debates about causal inferences by…
Descriptors: Social Sciences, Research Methodology, Statistical Inference, Robustness (Statistics)
Peer reviewed Peer reviewed
Direct linkDirect link
Sun, Shuyan; Pan, Wei – International Journal of Research & Method in Education, 2014
As applications of multilevel modelling in educational research increase, researchers realize that multilevel data collected in many educational settings are often not purely nested. The most common multilevel non-nested data structure is one that involves student mobility in longitudinal studies. This article provides a methodological review of…
Descriptors: Statistical Analysis, Hierarchical Linear Modeling, Longitudinal Studies, Educational Research
Peer reviewed Peer reviewed
Direct linkDirect link
Hong, Guanglei – Journal of Educational and Behavioral Statistics, 2010
Defining causal effects as comparisons between marginal population means, this article introduces marginal mean weighting through stratification (MMW-S) to adjust for selection bias in multilevel educational data. The article formally shows the inherent connections among the MMW-S method, propensity score stratification, and…
Descriptors: Statistical Analysis, Scores, Statistical Inference, Homogeneous Grouping