Publication Date
In 2025 | 0 |
Since 2024 | 3 |
Since 2021 (last 5 years) | 4 |
Since 2016 (last 10 years) | 4 |
Since 2006 (last 20 years) | 4 |
Descriptor
Source
Education and Information… | 4 |
Publication Type
Journal Articles | 4 |
Reports - Evaluative | 4 |
Education Level
Higher Education | 1 |
Postsecondary Education | 1 |
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Ivens, John P. – Education and Information Technologies, 2023
How instructional sequences guide learning processes are often regarded as a neutral act. However, does designing instruction carry a politics? This investigation explores how instruction is made as a pedagogical object. The purpose is to explore the epistemological principles and conceptual framework that produce instruction's formalized…
Descriptors: Instructional Design, Politics of Education, Learning Trajectories, Epistemology
Ujjwal Biswas; Samit Bhattacharya – Education and Information Technologies, 2024
The application of machine learning (ML) has grown and is now used to enhance learning outcomes. In blended classroom settings, ML, emerging smartphones and wearable technologies are commonly used to improve teaching and learning. The combination of these advanced technologies and ML plays a crucial role in enhancing real-time feedback quality.…
Descriptors: Artificial Intelligence, Blended Learning, Flipped Classroom, Technology Uses in Education
Saleem Malik; K. Jothimani – Education and Information Technologies, 2024
Monitoring students' academic progress is vital for ensuring timely completion of their studies and supporting at-risk students. Educational Data Mining (EDM) utilizes machine learning and feature selection to gain insights into student performance. However, many feature selection algorithms lack performance forecasting systems, limiting their…
Descriptors: Algorithms, Decision Making, At Risk Students, Learning Management Systems
Maryam Roshanaei – Education and Information Technologies, 2024
Artificial Intelligence (AI) strives to create intelligent machines with human-like abilities. However, like humans, AI can be prone to implicit biases due to flaws in data or algorithms. These biases may cause discriminatory outcomes and decrease trust in AI. Bias in higher education admission may limit access to opportunities and further social…
Descriptors: Best Practices, Algorithms, Artificial Intelligence, Computer Software